It is now established that the thieno[2,3-b]pyridines are a potent class of antiproliferatives. One of the main issues encountered for their clinical application is their low water solubility. In order to improve this, two strategies were pursued. First, a morpholine moiety was tethered to the molecular scaffold by substituting the sulphur atom with nitrogen, resulting in a 1H-pyrrolo[2,3-b]pyridine core structure. The water solubility was increased by three orders of magnitude, from 1.2 µg/mL (1-thieno[2,3-b]pyridine) to 1.3 mg/mL (3-pyrrolo[2,3-b]pyridine), however, it was only marginally active against cancer cells. The second strategy involved loading a very potent thieno[2,3-b]pyridine derivative (2) into a cholesteryl-poly(allylamine) polymer matrix for water solubilisation. Suppression of human pancreatic adenocarcinoma (BxPC-3) viability was observed to an IC50 value of 0.5 μg/mL (1.30 μM) in conjunction with the polymer, which is a five-fold (×5) increase in potency as compared to the free drug alone, demonstrating the utility of this formulation approach.
The compounds 2-amino-3-carboxamido-thieno[2,3-b]pyridines have demonstrated excellent anti-proliferative activity against human cancer cell lines, including the triple-negative breast cancer cell line MDA-MB-231. In this study, 81 novel thieno[2,3-b]pyridines were synthesised in four series to further improve their anti-proliferative activity, in particular by targeting an adjacent lipophilic pocket in the putative target enzyme phosphoinositide phospholipase C (PI-PLC). Overall, it was found that appending a propyl-aryl group at C-5 on 2-amino-3-carboxamido-thieno[2,3-b]pyridine resulted in compounds with potent biological activity, exhibiting IC50 values in the nanomolar range. The propyl linker could be an α,β-unsaturated ketone or a saturated propyl ketone, but the highest activity was obtained when allylic alcohols were the tether between thieno[2,3-b]pyridine and the appended aryl group, with compound 21r having IC50 values lower than 50 nM. Compounds with one extra carbon in the tether (i.e., a four-atom chain) were found to be considerably less active. Molecular modelling revealed this propyl tether places the newly introduced aryl ring in an untargeted lipophilic pocket within the active site of the phosphoinositide phospholipase C (PI-PLC) enzyme.
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of six GSLs on CSCs and non-CSCs on breast cancer cell lines (MDA-MB-231 and MCF-7). We also investigated the effect of 1 on the metabolic profile of these cell lines. The MTT assay was used for cytotoxicity determination. Apoptosis and expression of GSLs were assessed by flow cytometry. A GC–MS-coupled system was used for the separation and identification of metabolites. Compound 1 was cytotoxic for both cell lines, and the majority of cells died by treatment-induced apoptosis. The percentage of CSCs was significantly lower in the MDA-MB-231 cell line. Treatment with 1 caused a decrease of CSC IV6Neu5Ac-nLc4Cer+ MDA-MB-231 cells. In the MCF-7 cell line, the percentage of GalNAc-GM1b+ CSCs was increased, while the expression of Gg3Cer was decreased in both CSC and non-CSC. Twenty-one metabolites were identified by metabolic profiling. The major impact of the treatment was in glycolysis/gluconeogenesis, pyruvate and inositol metabolism. Compound 1 exhibited higher potency in MBA-MB-231 cells, and it deserves further examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.