This study extends beyond the limited research by distinguishing between satisfaction with breast appearance and outcome satisfaction. The study provides evidence for the role of psychosocial factors predicting key patient reported outcomes and demonstrates the importance of psychosocial well-being and reconstruction type. The findings also highlight the need for healthcare providers to consider the psychosocial well-being of patients both preoperatively and post operatively and provide preliminary evidence for the use of deep inferior epigastric perforator reconstructions over other types of reconstructive procedures.
Ariel is a mouse mutant that suffers from skeletal muscle myofibrillar degeneration due to the rapid accumulation of large intracellular protein aggregates. This fulminant disease is caused by an ENU-induced recessive mutation resulting in an L342Q change within the motor domain of the skeletal muscle myosin protein MYH4 (MyHC IIb). Although normal at birth, homozygous mice develop hindlimb paralysis from Day 13, consistent with the timing of the switch from developmental to adult myosin isoforms in mice. The mutated myosin (MYH4(L342Q)) is an aggregate-prone protein. Notwithstanding the speed of the process, biochemical analysis of purified aggregates showed the presence of proteins typically found in human myofibrillar myopathies, suggesting that the genesis of ariel aggregates follows a pathogenic pathway shared with other conformational protein diseases of skeletal muscle. In contrast, heterozygous mice are overtly and histologically indistinguishable from control mice. MYH4(L342Q) is present in muscles from heterozygous mice at only 7% of the levels of the wild-type protein, resulting in a small but significant increase in force production in isolated single fibres and indicating that elimination of the mutant protein in heterozygotes prevents the pathological changes observed in homozygotes. Recapitulation of the L342Q change in the functional equivalent of mouse MYH4 in human muscles, MYH1, results in a more aggregate-prone protein.
BackgroundThe contribution of glucocorticoids to sexual dimorphism in the heart is essentially unknown. Therefore, we sought to determine the sexually dimorphic actions of glucocorticoid signaling in cardiac function and gene expression. To accomplish this goal, we conducted studies on mice lacking glucocorticoid receptors (GR) in cardiomyocytes (cardioGRKO mouse model).Methods and ResultsDeletion of cardiomyocyte GR leads to an increase in mortality because of the development of spontaneous cardiac pathology in both male and female mice; however, females are more resistant to GR signaling inactivation in the heart. Male cardioGRKO mice had a median survival age of 6 months. In contrast, females had a median survival age of 10 months. Transthoracic echocardiography data showed phenotypic differences between male and female cardioGRKO hearts. By 3 months of age, male cardioGRKO mice exhibited left ventricular systolic dysfunction. Conversely, no significant functional deficits were observed in female cardioGRKO mice at the same time point. Functional sensitivity of male hearts to the loss of cardiomyocyte GR was reversed following gonadectomy. RNA‐Seq analysis showed that deleting GR in the male hearts leads to a more profound dysregulation in the expression of genes implicated in heart rate regulation (calcium handling). In agreement with these gene expression data, cardiomyocytes isolated from male cardioGRKO hearts displayed altered intracellular calcium responses. In contrast, female GR‐deficient cardiomyocytes presented a response comparable with controls.ConclusionsThese data suggest that GR regulates calcium responses in a sex‐biased manner, leading to sexually distinct responses to stress in male and female mice hearts, which may contribute to sex differences in heart disease, including the development of ventricular arrhythmias that contribute to heart failure and sudden death.
Background Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex‐specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. Methods and Results Genomewide studies show that glucocorticoids inhibit estrogen‐mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5‐HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5‐HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5‐HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase–mediated biotin–deoxyuridine triphosphate nick‐end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5‐HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. Conclusions These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion.
While clinical evidence indicates that exposure to mental stress is a linked to a two-fold increased risk for coronary heart disease, even independently from traditional risk factors, the underlying direct mechanisms between psychological stress and cardiovascular health status has not been determined. A growing aging population of adults 65 and older represents a particular patient population vulnerable to chronic mental stressors due to a decline in normal physiologic functions. The decrease in function of the cardiovascular system that occurs during aging leads to the activation of pathological processes associated with an increased risk for heart disease. Using a mouse model of mental stress induced by restraint, we mimic the biochemical and physiologic changes observed in chronically stressed humans, which is characterized by an increase in circulating glucocorticoids, such as cortisol. Middle-aged mice (6 months old) as well as old-aged mice (18 months old) were used to differentiate the effects of aging on the burden of mental stress associated cardiovascular disease. Genes implicated in cardiomyopathy and CVD were found to be significantly up-regulated, not only immediately after a two-week stress period, but remained significantly up-regulated after the mice were allowed to recover stress-free for 5 weeks. Gene expression of the glucocorticoid receptor was down-regulated following exposure to chronic stress, suggesting an involvement of the hypothalamic-pituitary axis negative feedback loop. Gene expression of markers for hypertrophy (MHY7, ACTA1, NPPB) were upregulated and persisted in upregulation after mice were allowed to recover. Hypertrophy was further indicated by heart weight to tibia length ratios. Significant changes in aortic samples also implicate an involvement of the vasculature. Chronic stress in humans and mice leads to an increase in inflammatory and pro-coagulant markers. In our study, inflammatory markers (LCN, IL-6, IL-17c, PTGS2) were shown to be significantly increased immediately after the period of chronic stress, however the markers return to non-significant levels when mice were allowed a recovery period. Chronic mental stress has a lasting and direct deleterious effect on the cardiovascular system and it is essential to understand these implications in an aging population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.