Programmed Death Ligand 1 (PD-L1) positivity rates differ between different metastatic sites and the primary tumor. Understanding PD-L1 expression characteristics could guide biopsy procedures and motivate research to better understand site-specific differences in the tumor microenvironment. The purpose of this study was to compare PD-L1 positivity on immune cells and tumor cells in primary and metastatic triple negative breast cancer (TNBC) tumors. Retrospective study utilizing the PD-L1 database of Foundation Medicine containing the SP142 companion diagnostic immunohistochemistry assay (SP142 CDx) and Food and Drug Administration guidelines for scoring. 340 TNBC cases (179 primary tumors and 161 unmatched metastatic lesions) were evaluated. The primary outcome measures were PD-L1 positivity rates in immune cells and tumor cells. χ2 test was used for comparisons. Spearman’s correlation coefficient was used for correlations. More primary tumors were positive for PD-L1 expression on immune cells than metastatic lesions (114 (63.7%) vs 68 (42.2%), p<0.0001). This was driven by the lower PD-L1 positivity rates in skin (23.8%, 95% CI: 8.22% to 47.2%), liver (17.4%, 95% CI: 5.00% to 38.8%) and bone (16.7%, 95% CI: 2.10% to 48.4%) metastases. Lung (68.8%, 95% CI: 41.3% to 90.0%), soft tissues (65.2%, 95% CI: 42.7% to 83.6%) and lymph nodes (51.1%, 95% CI: 35.8% to 66.3%) had PD-L1 % positivity rates similar to primary tumors. PD-L1 expression was rare on tumor cells in both the breast and metastatic sites (8.3% vs 4.3%, p=0.13). The rate of PD-L1 positivity varies by metastatic location with substantially lower positivity rates in liver, skin and bone metastases compared with primary breast lesions or lung, soft tissue or lymph node metastases. This difference in PD-L1 positivity rates between primary tumors and different metastatic sites should inform physicians when choosing sites to biopsy and suggests a difference in the immune microenvironment across metastatic sites.
PURPOSE Vulvar squamous cell carcinoma (vSCC) encompasses two predominant variants: one associated with detectable high-risk strains of human papillomavirus (hrHPV) and a second form often occurring in the context of chronic dermatitis in postmenopausal women. Genomic assessment of a large-scale cohort of patients with aggressive vSCC may identify distinct mutational signatures. MATERIALS AND METHODS Tumor samples from a total of 280 patients with vSCC underwent hybridization capture with analysis of up to 406 cancer-related genes. Human papillomavirus (HPV) sequences were detected by de novo assembly of nonhuman sequencing reads and aligned to the RefSeq database. Immunohistochemistry for programmed death-ligand 1 (PD-L1) was assessed. RESULTS One hundred two of 280 vSCCs (36%) contained hrHPV sequences, predominantly HPV 16 (88%). The HPV-positive (HPV+) group was significantly younger (median age, 59 v 64 years; P = .001). Compared with HPV-negative (HPV–) vSCCs, HPV+ tumors showed more frequent pathogenic alterations in PIK3CA (31% v 16%; P = .004), PTEN (14% v 2%; P < .0001), EP300 (14% v 1%; P < .0001), STK11 (14% v 1%; P < .0001), AR (5% v 0%; P = .006), and FBXW7 (10% v 3%; P = .03). In contrast, HPV– vSCCs showed more alterations in TP53 (83% v 6%; P < .0001), TERTp (71% v 9%; P < .0001), CDKN2A (55% v 2%; P < .0001), CCND1 amplification (22% v 2%; P < .0001), FAT1 (25% v 4%; P < .0001), NOTCH1 (19% v 6%; P = .002), and EGFR amplification (11% v 0%; P < .0001), as well as a higher rate of 9p24.1 ( PDL1/PDL2) amplification (5% v 1%) and PD-L1 immunohistochemistry high-positive tumor staining (33% v 9%; P = .04). CONCLUSION Comprehensive molecular profiles of vSCC vary considerably with hrHPV status and may inform patient selection into clinical trials. Sixty-one percent of HPV+ vSCCs had a pathogenic alteration in the PI3K/mTOR pathway, whereas HPV– vSCCs showed alterations in TP53, TERTp, CDKN2A, CCND1, and EGFR, and biomarkers associated with responsiveness to immunotherapy.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.