The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation of and connections between concepts. Three cases provide examples that illustrate the usefulness of this approach for comparing differences in the structure of the connections, as exhibited in what we refer to as dense, sparse, and hub adjacency matrices. We also make use of mathematical constructs from digraph theory, such as walks and being strongly connected, to indicate possible chains of connections and flexibility in making connections within and between concepts. We posit that this method is useful for characterizing student connections in other content areas and grade levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.