Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris. Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics. IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida. The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.
Purpose Coronavirus disease-2019 (COVID-19) is associated with a wide spectrum of clinical symptoms including acute respiratory failure. Biomarkers that can predict outcomes in patients with COVID-19 can assist with patient management. The aim of this study is to evaluate whether procalcitonin (PCT) can predict clinical outcome and bacterial superinfection in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Methods Adult patients diagnosed with SARS-CoV-2 by nasopharyngeal PCR who were admitted to a tertiary care center in Boston, MA with SARS-CoV-2 infection between March 17 and April 30, 2020 with a baseline PCT value were studied. Patients who were presumed positive for SARS-CoV-2, who lacked PCT levels, or who had a positive urinalysis with negative cultures were excluded. Demographics, clinical and laboratory data were extracted from the electronic medical records. Results 324 patient charts were reviewed and grouped by clinical and microbiologic outcomes by day 28. Baseline PCT levels were significantly higher for patients who were treated for true bacteremia (p = 0.0005) and bacterial pneumonia (p = 0.00077) compared with the non-bacterial infection group. Baseline PCT positively correlated with the NIAID ordinal scale and survival over time. When compared to other inflammatory biomarkers, PCT showed superiority in predicting bacteremia. Conclusions Baseline PCT levels are associated with outcome and bacterial superinfection in patients hospitalized with SARS-CoV-2.
Neutrophils are the most abundant white blood cell in the body and are key participants in the defense against fungal infections. Fungal infections occur often in patients with cirrhosis and are associated with increased 30‐day and 90‐day mortality. Previous studies have shown that specific neutrophil functions are abnormal in patients with cirrhosis, although the extent of neutrophil dysfunction is not well understood. We tested the ability of neutrophils from 21 hospitalized patients with cirrhosis and 23 healthy control patients to kill Candida albicans, a common fungal pathogen in patients with cirrhosis. Using an assay, we also measured the ability of neutrophils to coordinate multicellular, synchronized control of C. albicans hyphae through a process known as swarming. We found that neutrophils from patients with cirrhosis have significantly decreased fungicidal capacity compared with healthy control neutrophils (53% vs. 74%, P < 0.0001) and diminished ability to control hyphal growth normalized as a ratio to healthy control (0.22 vs. 0.65, P < 0.0001). Moreover, serum from patients with cirrhosis decreases the ability of healthy control neutrophils to kill C. albicans (from 60% to 41%, P < 0.003). Circulating concentration of the inflammatory cytokines tumor necrosis factor α, interleukin‐6, and interleukin‐8 were found to be significantly elevated in patients with cirrhosis compared to healthy controls. Following pretreatment with granulocyte‐colony stimulating factor and granulocyte‐macrophage colony‐stimulating factor, neutrophil function was restored to almost that of healthy controls. Conclusion: Our data establish profound neutrophil dysfunction against, and altered swarming to, C. albicans in patients with cirrhosis. This dysfunction can be partially reversed with cytokine augmentation ex vivo.
The use of mature neutrophil (granulocyte) transfusions for the treatment of neutropenic patients with invasive fungal infections (IFIs) has been the focus of multiple clinical trials. Despite these efforts, the transfusion of mature neutrophils has resulted in limited clinical benefit, likely owing to problems of insufficient numbers and the very short lifespan of these donor cells. In this report, we employed a system of conditionally immortalized murine neutrophil progenitors that are capable of continuous expansion, allowing for the generation of unlimited numbers of homogenous granulocytemacrophage progenitors (GMPs). These GMPs were assayed in vivo to demonstrate their effect on survival in 2 models of IFI: candidemia and pulmonary aspergillosis.Mature neutrophils derived from GMPs executed all cardinal functions of neutrophils.Transfused GMPs homed to the bone marrow and spleen, where they completed normal differentiation to mature neutrophils. These neutrophils were capable of homing and extravasation in response to inflammatory stimuli using a sterile peritoneal challenge model. Furthermore, conditionally immortalized GMP transfusions significantly improved survival in models of candidemia and pulmonary aspergillosis. These data confirm the therapeutic benefit of prophylactic GMP transfusions in the setting of neutropenia and encourage development of progenitor cellular therapies for the management of fungal disease in high-risk patients.
Background Solid organ (SOT) and stem cell transplant (SCT) recipients are at increased risk of invasive fungal disease despite normal neutrophil counts. Here, we measure neutrophil anti-Candida activity. Methods Twenty-one SOT and 19 SCT recipients were enrolled 2-4 months post-transplant and compared to 23 healthy control patients (HC). Neutrophils were co-incubated with C. albicans and percent killing, and swarming responses were measured. Results Neutrophils from transplant patients had decreased fungicidal capacity compared to HC (42%, 43%, 72%; SCT, SOT, and HC respectively; SCT vs. HC p<0.0001, SOT vs. HC p<0.0001, SOT vs. SCT p=0.8) including diminished ability to control hyphal growth (HC vs SOT and HC vs. SCT, 0.1455 vs. 0.3894, p ≤0.001, 0.1455 vs. 0.6295, p ≤0.0001, respectively). Serum from SCT, but not SOT recipients, inhibited the ability of HC neutrophils to control C. albicans (37%, 45%, 55%; SCT, SOT, and HC, respectively). Neutrophils control of hyphal growth was partially restored with G-CSF or GM-CSF. Conclusion Despite normal circulating numbers, our data suggests that neutrophils from SOT and SCT recipients mount dysfunctional responses against C. albicans. Intrinsic neutrophil changes and extrinsic serum factors may be responsible for the dysfunction, which is partially reversed with cytokine augmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.