Vertebrates use environmental cues to time reproduction to optimal breeding conditions. Numerous laboratory studies have revealed that light experienced during a critical window of the circadian (daily) rhythm can influence reproductive physiology. However, whether these relationships observed in captivity hold true under natural conditions and how they relate to observed variation in timing of reproductive output remains largely unexplored. Here we test the hypothesis that individual variation in daily timing recorded in nature (i.e. chronotype) is linked with variation in timing of breeding. To address this hypothesis and its generality across species, we recorded incubation behavior data to identify individual patterns in daily onset of activity for 2 temperate-breeding songbird species, the dark-eyed junco (Junco hyemalis aikeni) and the great tit (Parus major). We found that females who first departed from their nest earlier in the morning (earlier chronotype) also initiated nests earlier in the year. Date of data collection and ambient temperature had no effect, but stage of incubation influenced daily onset of activity in great tits. Our findings suggest a role for daily rhythms as one mechanism underlying the observed variation in seasonal timing of breeding.
Precise timing of life‐history transitions in predictably changing environments is hypothesized to aid in individual survival and reproductive success, by appropriately matching an animal's physiology and behavior with prevailing environmental conditions. Therefore, it is imperative for individuals to time energetically costly life‐history stages (i.e. reproduction) so they overlap with seasonal peaks in food abundance and quality. Female lifetime reproductive fitness is affected by several factors that influence energy balance, including arrival date, timing of egg production, and energetic condition. Therefore, any extra energetic costs during reproduction may negatively affect timing of egg production, and ultimately a female's fitness. For example, mounting an immunological response elicits a high energetic cost, and this transfer of resources towards cell and immune system maintenance could have direct negative effects on reproductive timing. In order to determine whether an immune challenge delays onset of breeding (i.e. egg production), we administered either a humoral immune challenge (keyhole limpet hemocyanin (KLH)) (treatment) or physiological saline (control) to free‐living female dark‐eyed juncos Junco hyemalis in the period immediately prior to egg‐laying (∼4 weeks). We found that KLH‐injected females artificially delayed clutch initiation when compared to control females. These data help to refine our understanding of how free‐living birds allocate resources between reproduction and self‐maintenance processes during the critical pre‐laying period of the annual cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.