Following infection from SARS-CoV-2, a substantial minority of people develop lingering after-effects known as ‘long COVID’. Fatigue is a common complaint with substantial impact on daily life, but the neural mechanisms behind post-COVID fatigue remain unclear. We recruited 37 volunteers with self-reported fatigue after a mild COVID infection and carried out a battery of behavioural and neurophysiological tests assessing the central, peripheral and autonomic nervous systems. In comparison to age and sex matched volunteers without fatigue (n = 52), we show underactivity in specific cortical circuits, dysregulation of autonomic function, and myopathic change in skeletal muscle. Cluster analysis revealed no sub-groupings, suggesting post-COVID fatigue is a single entity with individual variation, rather than a small number of distinct syndromes. Based on our analysis we were also able to exclude dysregulation in sensory feedback circuits and descending neuromodulatory control. These abnormalities on objective tests may aid in the development of novel approaches for disease monitoring.
Following infection from SARS-CoV-2, a substantial minority of people develop lingering after-effects known as "long COVID". Fatigue is a common complaint with substantial impact on daily life, but the neural mechanisms behind post-COVID fatigue remain unclear. We recruited volunteers with self-reported fatigue after a mild COVID infection and carried out a battery of behavioural and neurophysiological tests assessing the central, peripheral and autonomic nervous systems. In comparison to age and gender matched volunteers without fatigue, we show underactivity in specific cortical circuits, dysregulation of autonomic function, and myopathic change in skeletal muscles. Cluster analysis revealed no sub-groupings, suggesting post-COVID fatigue is a single entity with individual variation, rather than a small number of distinct syndromes. These abnormalities on objective tests may indicate novel avenues for principled therapeutic intervention, and could act as fast and reliable biomarkers for diagnosing and monitoring the progression of fatigue over time.
Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in sub-cortical motor pathways such as the reticulospinal tract could help to boost recovery after damage (e.g. stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20 and 30 minutes after stimulus pairing ended, TMS responses were enhanced, indicating the induction of long-term potentiation. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared to other available paradigms.SIGNIFICANCE STATEMENT:Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.