BACKGROUND Merkel-cell carcinoma is an aggressive skin cancer that is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus (MCPyV). Advanced Merkel-cell carcinoma often responds to chemotherapy, but responses are transient. Blocking the programmed death 1 (PD-1) immune inhibitory pathway is of interest, because these tumors often express PD-L1, and MCPyV-specific T cells express PD-1. METHODS In this multicenter, phase 2, noncontrolled study, we assigned adults with advanced Merkel-cell carcinoma who had received no previous systemic therapy to receive pembrolizumab (anti–PD-1) at a dose of 2 mg per kilogram of body weight every 3 weeks. The primary end point was the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1. Efficacy was correlated with tumor viral status, as assessed by serologic and immunohistochemical testing. RESULTS A total of 26 patients received at least one dose of pembrolizumab. The objective response rate among the 25 patients with at least one evaluation during treatment was 56% (95% confidence interval [CI], 35 to 76); 4 patients had a complete response, and 10 had a partial response. With a median follow-up of 33 weeks (range, 7 to 53), relapses occurred in 2 of the 14 patients who had had a response (14%). The response duration ranged from at least 2.2 months to at least 9.7 months. The rate of progression-free survival at 6 months was 67% (95% CI, 49 to 86). A total of 17 of the 26 patients (65%) had virus-positive tumors. The response rate was 62% among patients with MCPyV-positive tumors (10 of 16 patients) and 44% among those with virus-negative tumors (4 of 9 patients). Drug-related grade 3 or 4 adverse events occurred in 15% of the patients. CONCLUSIONS In this study, first-line therapy with pembrolizumab in patients with advanced Merkel-cell carcinoma was associated with an objective response rate of 56%. Responses were observed in patients with virus-positive tumors and those with virus-negative tumors. (Funded by the National Cancer Institute and Merck; ClinicalTrials.gov number, NCT02267603.)
Human immunodeficiency virus (HIV) infection leads to numerous perturbations of B cells through mechanisms that remain elusive. We performed DNA microarray, phenotypic, and functional analyses in an effort to elucidate mechanisms of B cell perturbation associated with ongoing HIV replication. 42 genes were up-regulated in B cells of HIV-viremic patients when compared with HIV-aviremic and HIV-negative patients, the majority of which were interferon (IFN)-stimulated or associated with terminal differentiation. Flow cytometry confirmed these increases and indicated that CD21low B cells, enhanced in HIV-viremic patients, were largely responsible for the changes. Increased expression of the tumor necrosis factor (TNF) superfamily (TNFSF) receptor CD95 correlated with increased susceptibility to CD95-mediated apoptosis of CD21low B cells, which, in turn, correlated with HIV plasma viremia. Increased expression of BCMA, a weak TNFSF receptor for B lymphocyte stimulator (BLyS), on CD21low B cells was associated with a concomitant reduction in the expression of the more potent BLyS receptor, BAFF-R, that resulted in reduced BLyS binding and BLyS-mediated survival. These findings demonstrate that altered expression of genes associated with IFN stimulation and terminal differentiation in B cells of HIV-viremic patients lead to an increased propensity to cell death, which may have substantial deleterious effects on B cell responsiveness to antigenic stimulation.
Purpose The persistent expression of Merkel cell polyomavirus (MCPyV) oncoproteins in Merkel cell carcinoma (MCC) provides a unique opportunity to characterize immune evasion mechanisms in human cancer. We isolated MCPyV-specific T cells and determined their frequency and functional status. Experimental Design Multi-parameter flow cytometry panels and HLA/peptide tetramers were used to identify and characterize T cells from tumors (n=7) and blood (n=18) of MCC patients and control subjects (n=10). PD-1 ligand (PD-L1) and CD8 expression within tumors were determined using mRNA profiling (n=35) and immunohistochemistry (n=13). Results MCPyV-specific CD8 T cells were detected directly ex vivo from the blood of 7 of 11 (64%) patients with MCPyV-positive tumors. In contrast, 0 of 10 control subjects had detectable levels of these cells in their blood (p<0.01). MCPyV-specific T cells in serial blood specimens increased with MCC disease progression and decreased with effective therapy. MCPyV-specific CD8 T cells and MCC-infiltrating lymphocytes expressed higher levels of therapeutically targetable PD-1 and Tim-3 inhibitory receptors compared to T cells specific to other human viruses (p<0.01). PD-L1 was present in 9 of 13 (69%) MCCs and its expression was correlated with CD8 lymphocyte infiltration. Conclusions MCC-targeting T cells expand with tumor burden and express high levels of immune checkpoint receptors PD-1 and Tim-3. Reversal of these inhibitory pathways is therefore a promising therapeutic approach for this virus-driven cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.