Our experience parallels the national trend of increasing use of CPM in women diagnosed with unilateral breast cancer. Women who chose to have CPM were younger, more highly educated, and more likely to have a family history of cancer.
It has been proposed that multiple rare variants in numerous genes collectively account for a substantial proportion of multifactorial inherited predisposition to a variety of diseases, including colorectal adenomas (CRA). We have studied this hypothesis by sequencing the adenomatous polyposis coli (APC) gene in 691 unrelated North American patients with CRAs and 969 matched healthy controls. Rare inherited nonsynonymous variants of APC were significantly overrepresented in patients who did not carry conventional pathogenic mutations in the APC or MutY homologue genes [non-familial adenomatous polyposis (FAP) non-MUTYH-associated polyposis (MAP) patients; 81 of 480, 16.9%] compared with patients with FAP or MAP (20 of 211, 9.5%, P = 0.0113), and this overrepresentation was highest in those non-FAP non-MAP patients with 11 to 99 CRAs (30 of 161, 18.6%, P = 0.0103). Furthermore, significantly more non-FAP non-MAP patients carried rare nonsynonymous variants in the functionally important B-catenin down-regulating domain compared with healthy controls (32 of 480 versus 37 of 969, P = 0.0166). In silico analyses predicted that f46% of the 61 different variants identified were likely to affect function, and upon testing, 7 of 16 nonsynonymous variants were shown to alter B-catenin-regulated transcription in vitro. These data suggest that multiple rare nonsynonymous variants in APC play a significant role in predisposing to CRAs. [Cancer Res 2008;68(2):358-63]
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26HER2/neu) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ–deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4+ or CD8+ T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26HER2/neu tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.