Sarcopenia is the loss of skeletal muscle mass and function with advancing age. It involves both complex genetic and modifiable risk factors, such as lack of exercise, malnutrition and reduced neurological drive. Cognitive decline refers to diminished or impaired mental and/or intellectual functioning. Contracting skeletal muscle is a major source of neurotrophic factors, including brain-derived neurotrophic factor, which regulate synapses in the brain. Furthermore, skeletal muscle activity has important immune and redox effects that modify brain function and reduce muscle catabolism. The identification of common risk factors and underlying mechanisms for sarcopenia and cognition may allow the development of targeted interventions that slow or reverse sarcopenia and also certain forms of cognitive decline. However, the links between cognition and skeletal muscle have not been elucidated fully. This review provides a critical appraisal of the literature on the relationship between skeletal muscle health and cognition. The literature suggests that sarcopenia and cognitive decline share pathophysiological pathways. Ageing plays a role in both skeletal muscle deterioration and cognitive decline. Furthermore, lifestyle risk factors, such as physical inactivity, poor diet and smoking, are common to both disorders, so their potential role in the muscle–brain relationship warrants investigation.
To reduce the burden of fracture, not only does bone fragility need to be addressed, but also injury prevention. Thus, fracture epidemiology irrespective of degree of trauma is informative. We aimed to determine age-and-sex-specific fracture incidence rates for the Barwon Statistical Division, Australia, 2006-2007. Using radiology reports, incident fractures were identified for 5342 males and 4512 females, with incidence of 210.4 (95 % CI 204.8, 216.2) and 160.0 (155.3, 164.7)/10,000/year, respectively. In females, spine (clinical vertebral), hip (proximal femoral) and distal forearm fractures demonstrated a pattern of stable incidence through early adult life, with an exponential increase beginning in postmenopausal years for fractures of the forearm followed by spine and hip. A similar pattern was observed for the pelvis, humerus, femur and patella. Distal forearm, humerus, other forearm and ankle fractures showed incidence peaks during childhood and adolescence. For males, age-related changes mimicked the female pattern for fractures of the spine, hip, ribs, pelvis and humerus. Incidence at these sites was generally lower for males, particularly among the elderly. A similar childhood-adolescent peak was seen for the distal forearm and humerus. For ankle fractures, there was an increase during childhood and adolescence but this extended into early adult life; in contrast to females, there were no further age-related increases. An adolescent-young adult peak incidence was observed for fractures of the face, clavicle, carpal bones, hand, fingers, foot and toe, without further age-related increases. Examining patterns of fracture provides the evidence base for monitoring temporal changes in fracture burden, and for identifying high-incidence groups to which fracture prevention strategies could be directed.
BackgroundWe aimed to examine the relationship between musculoskeletal deterioration and all‐cause mortality in a cohort of women studied prospectively over a decade.MethodsA cohort of 750 women aged 50–94 years was followed for a decade after femoral neck bone mineral density (BMD) and appendicular lean mass (ALM) were measured using dual energy X‐ray absorptiometry, in conjunction with comorbidities, health behaviour data, and other clinical measures. The outcome was all‐cause mortality identified from the Australian National Deaths Index. Using Cox proportional hazards models and age as the time variable, mortality risks were estimated according to BMD groups (ideal‐BMD, osteopenia, and osteoporosis) and ALM groups (T‐scores > −1.0 high, −2.0 to −1.0 medium, <−2.0 low).ResultsDuring 6712 person years of follow‐up, there were 190 deaths, the proportions increasing with diminishing BMD: 10.7% (23/215) ideal‐BMD, 23.5% (89/378) osteopenia, 49.7% (78/157) osteoporosis; and with diminishing ALM: 17.0% (59/345) high, 26.2% (79/301) medium, 50.0% (52/104) low. In multivariable models adjusted for smoking, polypharmacy, and mobility, compared with those with ideal BMD, mortality risk was greater for those with osteopenia [hazard ratio (HR) 1.77, 95% confidence interval (CI) 1.11–2.81] and osteoporosis (HR 2.61, 95%CI 1.60–4.24). Similarly, compared with those with high ALM, adjusted mortality risk was greater for medium ALM (HR 1.36, 95%CI 0.97–1.91) and low ALM (HR 1.65, 95%CI 1.11–2.45). When BMD and ALM groups were tested together in the model, BMD remained a predictor of mortality (HR 1.74, 95%CI 1.09–2.78; HR 2.82, 95%CI 1.70–4.70; respectively), and low ALM had borderline significance (HR 1.52, 95%CI 1.00–2.31), which was further attenuated after adjusting for smoking, polypharmacy, and mobility.ConclusionsPoor musculoskeletal health increased the risk for mortality independent of age. This appears to be driven mainly by a decline in bone mass. Low lean mass independently exacerbated mortality risk, and this appeared to operate through poor health exposures.
We aimed to examine muscle strength, function and mass in relation to cognition in older men. this cross-sectional data-set included 292 men aged ≥60 yr. Handgrip strength (kg) was measured by dynamometry, gait speed by 4-metre walk (m/s) and appendicular lean mass (kg) by dual-energy x-ray absorptiometry. cognition was assessed across four domains: psychomotor function, attention, visual learning and working memory. Composite scores for overall cognition were calculated. Bivariate analyses indicated that handgrip strength and gait speed were positively associated with cognitive function. After accounting for confounders, positive associations between individual muscle (or physical) measures and cognitive performance were sustained for handgrip strength and psychomotor function, gait speed and psychomotor function, gait speed and attention, handgrip strength and overall cognition, and gait speed and overall cognition. in multivariable models, handgrip strength and gait speed independently predicted psychomotor function and overall cognition. no associations were detected between lean mass and cognition after adjusting for confounders. thus, low muscle strength and slower gait speed, rather than low lean mass, were associated with poor cognition in older men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.