Angiotensin‐converting enzyme 2 (ACE2) is highly expressed in the kidney and hydrolyzes angiotensin II (Ang II) to Ang(1–7). Since Ang II is a strong activator of oxidative stress, we reasoned that ACE2 could be involved in the regulation of renal oxidative stress by governing the levels of Ang II. We, therefore, assessed levels of oxidative stress in kidney cortex of ACE2 knockout and wild‐type littermate mice under baseline conditions. We found multiple markers of increased oxidative stress in ACE2KO mice. NADPH oxidase activity was increased in kidney cortex from ACE2KO mice as compared to WT (227 ± 24% vs.100 ± 19%, P < 0.001). However, kidney catalase and superoxide dismutase activities were not different between groups. Exogenous Ang II was degraded less efficiently by kidneys from ACE2KO mice than WT mice, and administration of an AT1R blocker (losartan 30 mg/kg/day) resulted in normalization of NADPH oxidase activity in the ACE2KO. These findings suggest that an AT1R‐dependent mechanism contributes to increased ROS observed in the ACE2KO. This study demonstrates that genetic deficiency of ACE2 activity in mice fosters oxidative stress in the kidney in the absence of overt hypertension and is associated with reduced kidney capacity to hydrolyze Ang II. ACE2KO mice serve as a novel in vivo model to examine the role of overactivity of NADPH oxidase in kidney function.
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.
CKD aggravates vein graft disease through mechanisms involving IL-9 and mast cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.