Abstract:A successful application of dense image matching algorithms to historical aerial photographs would offer a great potential for detailed reconstructions of historical landscapes in three dimensions, allowing for the efficient monitoring of various landscape changes over the last 50+ years. In this paper we propose the combination of image-based dense DSM (digital surface model) reconstruction from historical aerial imagery with object-based image analysis for the detection of individual buildings and the subsequent analysis of settlement change. Our proposed methodology is evaluated using historical greyscale and color aerial photographs and numerous reference data sets of Andermatt, a historical town and tourism destination in the Swiss Alps. In our paper, we first investigate the DSM generation performance of different sparse and dense image matching algorithms. They demonstrate the superiority of dense matching algorithms and of the resulting historical DSMs with root mean square error values of 1-1.5 GSD (ground sampling distance) and yield point densities comparable to those of recent airborne LiDAR DSMs. In the second part, we present an object-based building detection workflow mainly based on the historical DSMs and the historical imagery itself. Additional inputs are a current digital terrain model and a cadastral building database. For the case of densely matched DSMs, the evaluation yields building detection rates of 92% for grayscale and 94% for color imagery.
ABSTRACT:In this paper we investigate the performance of new light-weight multispectral sensors for micro UAV and their application to selected tasks in agronomical research and agricultural practice. The investigations are based on a series of flight campaigns in 2014 and 2015 covering a number of agronomical test sites with experiments on rape, barley, onion, potato and other crops. In our sensor comparison we included a high-end multispectral multiSPEC 4C camera with bandpass colour filters and reference channel in zenith direction and a low-cost, consumer-grade Canon S110 NIR camera with Bayer pattern colour filters. Ground-based reference measurements were obtained using a terrestrial hyperspectral field spectrometer. The investigations show that measurements with the high-end system consistently match very well with ground-based field spectrometer measurements with a mean deviation of just 0.01-0.04 NDVI values. The low-cost system, while delivering better spatial resolutions, expressed significant biases. The sensors were subsequently used to address selected agronomical questions. These included crop yield estimation in rape and barley and plant disease detection in potato and onion cultivations. High levels of correlation between different vegetation indices and reference yield measurements were obtained for rape and barley. In case of barley, the NDRE index shows an average correlation of 87% with reference yield, when species are taken into account. With high geometric resolutions and respective GSDs of down to 2.5 cm the effects of a thrips infestation in onion could be analysed and potato blight was successfully detected at an early stage of infestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.