Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.
Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day) 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month) administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.
The aim of this study was to determine whether upregulated cutaneous expression of α1-adrenoceptors (α1-AR) is a source of pain in patients with complex regional pain syndrome (CRPS). Immunohistochemistry was used to identify α1-AR on nerve fibres and other targets in the affected and contralateral skin of 90 patients, and in skin samples from 38 pain-free controls. The distribution of α1-AR was compared between patients and controls, and among subgroups of patients defined by CRPS duration, limb temperature asymmetry, and diagnostic subtype (CRPS I vs CRPS II). In addition, α1-AR expression was investigated in relation to pain and pinprick hyperalgesia evoked by intradermal injection of the α1-AR agonist phenylephrine. Expression of α1-AR on nerve bundles in the CRPS-affected limb was greater in patients who reported prolonged pain and pinprick hyperalgesia around the phenylephrine injection site than in patients with transient pain after the injection. In addition, α1-AR expression in nerve bundles was greater in patients with CRPS II than CRPS I, and was greater in acute than more long-standing CRPS. Although less clearly associated with the nociceptive effects of phenylephrine, α1-AR expression was greater on dermal nerve fibres in the painful than contralateral limb. Together, these findings are consistent with nociceptive involvement of cutaneous α1-AR in CRPS. This involvement may be greater in acute than chronic CRPS, and in CRPS II than CRPS I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.