To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10
For large-scale applications in biotechnology, cultivation of mammalian cells in suspension is an essential prerequisite. Typically, suspension cultures are grown in glass spinner flasks filled to less than 50% of the nominal volume. We propose a superior system for suspension cultures of mammalian cells based on orbital shaker technology. We found that "square-shaped" bottles (square bottles) provide an inexpensive but efficient means to grow HEK-293 EBNA and CHO-DG44 cells to high density. Cultures in agitated 1-L square bottles exceeded the performance of cultures in spinner flasks, reaching densities up to 7 x 10(6) cells/mL for HEK-293 EBNA cells and 5 x 10(6) cells/mL for CHO-DG44 cells in comparison to (2.5-4) x 10(6) cells/mL for cultures of the same cells grown in spinner flasks. For 1-L square bottles, optimal cell growth and viability were observed with a filling volume of 30-40% of the nominal volume and an agitation speed of 130 rpm at a rotational diameter of 2.5 cm. Transient reporter gene expression following gene delivery by calcium phosphate-DNA co-precipitation was the same or slightly better for HEK-293 EBNA cells grown in square bottles as compared to spinner flasks. Reductions in cost, simplified handling, and better performance in cell growth and viability make the agitated square bottle a new and very promising tool for the cultivation of mammalian cells in suspension.
Recent advances in genomics, proteomics, and structural biology raised the general need for significant amounts of pure recombinant protein (r-protein). Because of the difficulty in obtaining in some cases proper protein folding in bacteria, several methods have been established to obtain large amounts of r-proteins by transgene expression in mammalian cells. We have developed three nonviral DNA transfer protocols for suspension-adapted HEK-293 and CHO cells: (1) a calcium phosphate based method (Ca-Pi), (2) a calcium-mediated method called Calfection, and (3) a polyethylenimine-based method (PEI). The first two methods have already been scaled up to 14 L and 100 L for HEK-293 cells in bioreactors. The third method, entirely serum-free, has been successfully applied to both suspension-adapted CHO and HEK-293 cells. We describe here the application of this technology to the transient expression in suspension cultivated HEK-293 EBNA cells of some out of more than 20 secreted r-proteins, including antibodies, dimeric proteins, and tagged proteins of various complexity. Most of the proteins were expressed from different plasmid vectors within 5-10 days after the availability of the DNA. Transfections were successfully performed from the small scale (1 mL in 12-well microtiter plates) to the 2 L scale. The results reported made it possible to establish an optimized cell culture and transfection protocol that minimizes batch-to-batch variations in protein expression. The work presented here proves the applicability and robustness of transient transfection technology for the expression of a variety of recombinant proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.