Experimental elevations of glucocorticoids are used to understand how chronic exposure to stressors affects vertebrate performance. A variety of methods exist to exogenously manipulate glucocorticoids. Animal responses to glucocorticoid manipulations are variable within and among species. Incorporating glucocorticoid measures into conservation physiology should involve consideration of factors driving this variation.
It is increasingly common for scientists to engage in sharing science-related knowledge with diverse knowledge users-an activity called science communication. Given that many scientists now seek information on how to communicate effectively, we have generated a list of 16 important considerations for those interested in science communication: ( (16) Evaluate, reflect, and be prepared to adapt. It is our ambition that the ideas shared here will encourage readers to engage in science communication and increase the effectiveness of those already active in science communication, stimulating them to share their experiences with others.
Wild and captive vertebrates face multiple stressors that all have the potential to induce chronic maternal stress (i.e., sustained, elevated plasma glucocorticoids), resulting in embryo exposure to elevated maternally derived glucocorticoids. In oviparous taxa such as fish, maternally derived glucocorticoids in eggs are known for their capacity to shape offspring phenotype. Using a variety of methodologies, scientists have quantified maternally derived levels of egg cortisol, the primary glucocorticoid in fishes, and examined the cascading effects of egg cortisol on progeny phenotype. Here we summarize and interpret the current state of knowledge on egg cortisol in fishes and the relationships linking maternal stress/state to egg cortisol and offspring phenotype/fitness. Considerable variation in levels of egg cortisol exists across species and among females within a species; this variation is hypothesized to be due to interspecific differences in reproductive life history and intraspecific differences in female condition. Outcomes of experimental studies manipulating egg cortisol vary both inter- and intraspecifically. Moreover, while exogenous elevation of egg cortisol (as a proxy for maternal stress) induces phenotypic changes commonly considered to be maladaptive (e.g., smaller offspring size), emerging work in other taxa suggests that there can be positive effects on fitness when the offspring's environment is taken into account. Investigations into (i) mechanisms by which egg cortisol elicits phenotypic change in offspring (e.g., epigenetics), (ii) maternal and offspring buffering capacity of cortisol, and (iii) factors driving natural variation in egg cortisol and how this variation affects offspring phenotype and fitness are all germane to discussions on egg glucocorticoids as signals of maternal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.