Despite decades of research on EEG-based brain-computer interfaces (BCIs) in patients with amyotrophic lateral sclerosis (ALS), there is still little known about how the disease affects the electromagnetic field of the brain. This may be one reason for the present failure of EEG-based BCI paradigms for completely locked-in ALS patients. In order to help understand this failure, we have recorded resting state data from six ALS patients and thirty-two healthy controls to investigate for group differences. While similar studies have been attempted in the past, none have used high-density EEG or tried to distinguish between physiological and non-physiological sources of the EEG. We find an ALS-specific global increase in gamma power (30-90 Hz) that is not specific to the motor cortex, suggesting that the mechanism behind ALS affects non-motor cortical regions even in the absence of comorbid cognitive deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.