Mild cognitive impairment (MCI) is common in Parkinson’s disease patients. However, its underlying mechanism is not well understood, which has hindered new treatment discoveries specific to MCI. The aim of this study was to investigate functional connectivity changes of the caudate nucleus in cognitively impaired Parkinson’s patients. We recruited 18 Parkinson’s disease patients—10 PDNC [normal cognition Parkinson’s disease; Montreal Cognitive Assessment (MoCA) ≥ 26], 8 PDLC (low cognition Parkinson’s disease; MoCA < 26) —and 10 age-matched healthy controls. All subjects were scanned with resting-state functional magnetic resonance imaging (MRI) and perfusion MRI. We analyzed these data for graph theory metrics and Alzheimer’s disease-like pattern score, respectively. A strong positive correlation was found between the functional connectivity of the right caudate nucleus and MoCA scores in Parkinson’s patient groups, but not in healthy control subjects. Interestingly, PDNC’s functional connectivity of the right caudate was significantly higher than both PDLC and healthy controls, while PDLC and healthy controls were not significantly different from each other. We found that Alzheimer’s disease-like metabolic/perfusion pattern score correlated with MoCA scores in healthy controls, but not in Parkinson’s disease. Increased caudate connectivity may be related to a compensatory mechanism found in cognitively normal patients with Parkinson’s disease. Our findings support and complement the dual syndrome hypothesis.
Refractory status epilepticus (RSE) is a life-threatening emergency with high mortality and poor functional outcomes in survivors. Treatment is typically limited to intravenous anesthetic infusions and multiple anti-seizure medications. While ongoing seizures can cause permanent neurological damage, medical therapies also pose severe and life-threatening side effects. We tested the feasibility of using high-definition transcranial direct current stimulation (hd-tDCS) in the treatment of RSE. We conducted 20-min hd-tDCS sessions at an outward field orientation, intensity of 2-mA, 4 + 1 channels, and customized for deployment over the electrographic maximum of epileptiform activity (“spikes”) determined by real-time clinical EEG monitoring. There were no adverse events from 32 hd-tDCS sessions in 10 RSE patients. Over steady dosing states of infusions and medications in 29 included sessions, median spike rates/patient fell by 50% during hd-tDCS on both automated ( p = 0.0069) and human ( p = 0.0277) spike counting. Median spike rates for any given stimulation session also fell by 50% during hd-tDCS on automated spike counting ( p = 0.0032). Immediately after hd-tDCS, median spike rates/patient remained down by 25% on human spike counting ( p = 0.018). Compared to historical controls, hd-tDCS subjects were successfully discharged from the intensive care unit (ICU) 45.8% more often ( p = 0.004). When controls were selected using propensity score matching, the discharge rate advantage improved to 55% ( p = 0.002). Customized EEG electrode targeting of hd-tDCS is a safe and non-invasive method of hyperacutely reducing epileptiform activity in RSE. Compared to historical controls, there was evidence of a cumulative chronic clinical response with more hd-tDCS subjects discharged from ICU. Supplementary Information The online version contains supplementary material available at 10.1007/s13311-022-01317-5.
Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder that can result from experiencing traumatic events. Accurate diagnosis and optimal treatment strategies can be difficult to achieve, due to the heterogeneous etiology and symptomology of PTSD, and overlap with other psychiatric disorders. Advancing our understanding of PTSD pathophysiology is therefore critical. While functional connectivity alterations have shown promise for elucidating the neurobiological mechanisms of PTSD, previous findings have been inconsistent. Eleven patients with PTSD in our first cohort (PTSD-A) and 11 trauma-exposed controls (TEC) underwent functional magnetic resonance imaging. First, we investigated the intrinsic connectivity within known resting state networks (eg, default mode, salience, and central executive networks) previously implicated in functional abnormalities with PTSD symptoms. Second, the overall topology of network structure was compared between PTSD-A and TEC using graph theory. Finally, we used a novel combination of graph theory analysis and scaled subprofile modeling (SSM) to identify a disease-related, covarying pattern of brain network organization. No significant group differences were found in intrinsic connectivity of known resting state networks and graph theory metrics (clustering coefficients, characteristic path length, smallworldness, global and local efficiencies, and degree centrality). The graph theory/SSM analysis revealed a topographical pattern of altered degree centrality differentiating PTSD-A from TEC. This PTSD-related network pattern expression was additionally investigated in a separate cohort of 33 subjects who were scanned with a different MRI scanner (22 patients with PTSD or PTSD-B, and 11 healthy trauma-naïve controls or TNC). Across all participant groups, pattern expression scores were significantly lower in the TEC group, while PTSD-A, PTSD-B, and TNC subject profiles did not differ from each other. Expression level of the pattern was correlated with symptom severity in the PTSD-B group. This method offers potential in developing objective biomarkers associated with PTSD. Possible interpretations and clinical implications will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.