For the transportation of natural gas through pipelines, gas pumping units (GPU) are installed at numerous compressor stations (CS), the energy carrier for which, in most cases, is transported natural gas. 0.5 ... 1.5 % of the volume of transported gas is consumed (burned) by the pumping unit drive. The situation with the replacement of existing equipment with modern equipment is associated with significant investments, on the one hand, and the uncertainty with the transit of Russian natural gas through gas transmission systems of Ukraine in the near future. More promising is the way to increase the efficiency of the GPU cycle through the use of circuits with preliminary cooling of the compressed gas. The aim of this research is studying the prospects for the application of technology for pre-cooling technological natural gas before compression in a gas pumping unit based on heat-using absorption refrigeration machines. To analyze the effect of pre-cooling of technological natural gas on the compressor stations of main gas pipelines, gas pumping units – GTK-10I were selected. The calculation of GPU power consumption and fuel gas consumption at various temperatures of the process gas at the inlet to the supercharger was performed. The calculation of the operating parameters of the gas pumping unit is performed and the energy and financial prospects of the technology for cooling the process gas before compression in the GPU CS are shown. For the current economic situation (July 2019) in the Ukrainian gas market, the daily decrease in operating costs in standard gas pipelines with a decrease in gas temperature before compression in the gas pumping unit by 20 K ranges from 1800 USD to 3360 USD. A scheme of a recycling plant based on absorption water-ammonia refrigeration machine (AWRM) is proposed, which in the range of initial data allows to reduce the temperature of technological natural gas before compression by 11 ... 13 ° C.
Показано, що одним з відомих напрямків часткової компенсації дефіциту води можуть бути системи отримання води з атмосферного повітря, в яких холодильні машини або агрегати забезпечують температуру нижче температури точки роси. При виборі типів холодильних машин або агрегатів для цих систем перспективним може бути використання сонячної енергії, зокрема, сонячних колекторів, широко використовуваних в світі для опалення в холодний і перехідний період року, а також для господарських і санітарно-гігієнічних потреб. Тут великі перспективи мають абсорбційні водоаміачні системи, які на відміну від бромістолітієвих аналогів мають можливість працювати з повітряним охолодженням теплорозсіювальних елементів. У той же час використання абсорбційних водоаміачних холодильних систем в системах отримання води з атмосферного повітря утруднено через недостатній рівень температур джерела сонячної енергії. Об'єктом досліджень є модернізований абсорбційний холодильний агрегат (АХА), в якому проводиться додаткове очищення слабкого водоаміачного розчину (ВАР) шляхом випаровування частини аміаку в парогазову суміш. Розроблено методику розрахунку для визначення питомих теплових навантажень на елементи конструкції при заданих параметрах робочого тіла в характерних точках (вхід-вихід елементів) з подальшим визначенням енергетичної ефективності холодильного циклу АХА. Було показано, що склад інертного газу не впливає на ефективність циклу. Заміна водню гелієм призводить лише до зростання кількості циркулюючого газу в 2 рази, що ускладнює роботу контуру природної циркуляції між абсорбером і випарниками аміаку і розчину. Максимальну ефективність має АХА, що працює в діапазоні температур охолодження – від -18 до +12 °С. При цьому визначальний вплив на енергетичну ефективність надає температура кінця випаровування. Результати енергетичного аналізу АХА дозволили сформулювати ряд рекомендацій для розробників. Відзначено, що необхідні для розрахунку випарника розчину вихідні дані можна отримати в результаті моделювання процесів тепломасообміну в наближенні адіабатності процесів
This paper outlines the prospect of obtaining water from atmospheric air by cooling it to the dew point temperature using refrigeration machines in order to partially reduce water scarcity in the arid regions of our planet. To minimize energy costs in the systems for obtaining water from atmospheric air, it is proposed to utilize solar energy with absorption refrigeration units (ARUs) acting as a source of artificial cold. The characteristic thermodynamic processes have been analyzed in a modernized ARU, capable of working at a lower thermal energy source's temperature than its analogs. The possibility has been studied to reduce the temperature of the heat source by including a solution vaporizer in the ARU scheme. The analysis involved an authentic method based on the balance of specific streams of ARU working body components and actual boundary conditions at characteristic points of the cycle. A limit was shown for the level of a minimum boiling temperature in the ARU generator (from 90 °C) when the systems for obtaining water from atmospheric air are operated under current climatic conditions. The simulation of heat-and-mass exchange processes during contact interaction between a steam-gas mixture and ammonia water solution was carried out. Based on variant calculations, it has been shown that the proposed ARU structure with an adiabatic solution vaporizer could work as part of systems to obtain water from atmospheric air at a hot spring temperature above 100 °C and constructively enough fits into the element base of standard models. It has been proposed to use two types of solar thermal energy sources to operate ARU. In a tropical climate, with vacuum solar collectors or solar energy hubs; in a temperate climate zone, with solar collectors with water as a heat carrier
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.