Purpose. Solving the problem of increasing the pumping equipment operational lifetime when pumping-out contaminated groundwater in the iron-ore industry by extracting the hard, abrasive part, using magnetic filters based on permanent ferrite magnets. Methods. To produce spherical hard-magnetic ferrite elements that catch finely-dispersed magnetic and weakly-magnetic abrasive particles when pumping-out contaminated groundwater in the iron-ore industry, barium ferrite powder BaО∙6Fe2O3 is applied, which is usually used for obtaining hard-magnetic ferrites. Spherical elements for filling a magnetic filtering installation are obtained by the method of spheroidizing the barium ferrite powder in a dragee machine. Sintering of spherical granules obtained from barium ferrite powder is conducted in a high-temperature atmospheric electric box furnace. The sintered spherical elements made of hard-magnetic barium ferrite are magnetized using a magnetic pulsed toroidal-shaped setup in a pulsed constant magnetic field. Findings. For continuous pumping-out and purification of contaminated groundwater from magnetic, weakly-magnetic and non-magnetic highly abrasive particles with the help of magnetic filters, a scheme of a filtering installation of two sections is pro-posed. A technology for producing spherical permanent magnets from barium ferrite powder has been developed for a filtering installation, which includes a coarse purification column with hollow-spherical permanent magnets of 16-17 mm in diameter and a fine purification column with full-bodied spherical barium ferrite magnets of 6-7 mm in diameter. Originality.The term of pumping equipment operation is doubled if to eliminate abrasive wear due to the filtering two-section installation by filling with barium ferrite spherical magnets. In the case of changing the filter, idle time is reduced by using the supplementary auxiliary column. The possibility of processing filtration products and their use in the field of construction and metallurgy without environmental pollution is substantiated. Practical implications. The scheme of magnetic groundwater purification in the iron-ore industry is proposed, consisting of a filtering column of coarse and fine purification from abrasive particles. A technology for producing spherical magnets with different diameters has been developed to ensure the quality of the process. The research results allow to increase the operational lifetime of pumping equipment by eliminating abrasive wear, which will lead to significant savings in the replacement and repair of centrifugal pumps. Keywords: pumping equipment, groundwater, wear, barium ferrite, spherical magnet, filter, iron-ore industry
The article deals with the conduct of a numerical experiment on study of the stress-strain state of building structures according to using developed mathematical models. Research methodology consists in the use of one of the most advanced BIM technologies in the world, namely of the LIRA 10.10 software complex © 2013-2021 LIRA Soft, for creating adequate mathematical models of an industrial building taking into account the most likely difficult operating conditions: loads, seismic and operational impacts, progressive collapse. Calculations have been made progressive collapse, where the initial calculation scheme is taken as the main scheme of the shelf. To determine the most dangerous part of the building in in the event of an emergency situation, a set of calculations was carried out with the sequential removal of each support column. From the analysis of calculations, calculation schemes were determined, in which the greatest forces arise from a special combination of loads. Later, these schemes were adopted basic for emergency calculations. Conducted mathematical modeling the work of building structures in difficult chemical conditions production using modern BIM technology, such as PC LIRA 10.10, allows you to get the necessary reliable data on the operation of real buildings thanks to the use of world experience in design, construction and operation of construction structures, buildings and structures during creation software product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.