Background. Vitamin D deficiency is prevalent in all the world countries. Recent studies show the correlation between vitamin D deficiency and musculoskeletal disorders. The purpose of this study is to examine vitamin D deficiency and insufficiency prevalence in patients of various ages, who have musculoskeletal disorders, and to reveal the influence of seasonal factors on these conditions. Materials and methods. 3460 patients of the Ukrainian scientific Medical Center of Osteoporosis Problems, aged 1 to 92 years, who were referred by other specialists to the center for bone state evaluation, were examined. A majority of the patients presented with osteoporosis and its complications, spinal osteochondrosis, knee and hip osteoarthritis (mean age-52.90 ± 21.10 years). Most of the patients were women (83.5 %). 25(ОН)D and parathyroid hormone analyses were performed by means of electrochemiluminescent method (Elecsys 2010 analyzer, Roche Diagnostics, Germany) and cobas test-systems. statistica 6.0 software package (Copyright statsoft, Inc., 1984-2001) was also used. Results. Among the patients with musculoskeletal pathology, the highest 25(ОН)D level was noted in the age group of 1-9 years and the lowest-in the age group of 80 and over. Age negatively influenced 25(ОН)D values. Prevalence of vitamin D deficiency among the patients with musculoskeletal pathology was 37.3 %, vitamin D insufficiency-30.6 %; 32.1 % of patients had normal vitamin D status. Normal 25(OH)D level was found in 38.0 % of children, 33.2 % of adults and in 29.6 % of elderly patients. Month of blood sampling had a significant influence on 25(ОН)D content (F = 7.49; p < 0.001). The highest significant differences in 25(ОН)D levels during the summer vs. winter months were observed in the age groups of 10-19 (18.2 %), 40-49 (17.3 %), 30-39 (16.2 %) и 1-9 years (16.1 %). There were no significant seasonal differences observed in the elderly patients (60 years and older) with musculoskeletal pathology. Conclusions. Despite the combined calcium and vitamin D supplementation in most patients with musculoskeletal pathology, only 37.9 % of children, 33.2 % of adults and 29.6 % of the elderly people had normal 25(ОН)D values and thus required screening examination of vitamin D level in patients with musculoskeletal disorders and additional vitamin D prescription (Guidelines for the Central and Eastern Europe).
The aim of the study was to assess the clinical performance of the model combining areal bone mineral density (aBMD) at spine and microarchitecural texture (TBS) for the detection of the osteoporotic fracture. The Eastern European Study is a multicenter study (Serbia, Bulgaria, Romania and Ukraine) evaluating the role of TBS in routine clinical practice as a complement to aBMD. All scans were acquired on Hologic Discovery and GE Prodigy densitometers in a routine clinical manner. The additional clinical values of aBMD and TBS were analyzed using a two steps classification tree approach (aBMD followed by TBS tertiles) for all type of osteoporotic fracture (All-OP Fx). Sensitivity, specificity and accuracy of fracture detection as well as the Net Reclassification Index (NRI) were calculated. This study involves 1031 women subjects aged 45 and older recruited in east European countries. Clinical centers were cross-calibrated in terms of BMD and TBS. As expected, areal BMD (aBMD) at spine and TBS were only moderately correlated (r (2) = 0.19). Prevalence rate for All-OP Fx was 26 %. Subjects with fracture have significant lower TBS and aBMD than subjects without fracture (p < 0.01). TBS remains associated with the fracture even after adjustment for age and aBMD with an OR of 1.27 [1.07-1.51]. When using aBMD T-score of -2.5 and the lowest TBS tertile thresholds, both BMD and TBS were similar in terms of sensitivity (35 vs. 39 %), specificity (78 vs. 80 %) and accuracy (64 vs. 66 %). aBMD and TBS combination, induced a significant improvement in sensitivity (+28 %) and accuracy (+17 %) compared to aBMD alone whereas a moderate improvement was observed in terms of specificity (+9 %). The overall combination gain was 36 % as expressed using the NRI. aBMD and TBS combination decrease significantly the number of subjects needed to diagnose from 7 for aBMD alone to 2. In a multi-centre Eastern European cohort, we have shown that the use of TBS in addition to the aBMD permit to reclassified correctly more than one-third of the overall subjects. Furthermore, the number of subjects needed to diagnose fell to 2 subjects. Economical studies have to be performed to evaluate the gain induced by the use of TBS for the healthcare system.
Abstract-Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is sitespecific. This study is aimed at determining the connection between the bone mineral density (BMD) and trabecular bone score (TBS) parameters in Ukrainian women suffering from obesity. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group A included 360 women with obesity whose BMI was ≥30 kg/m 2 , and Group B -665 women with no obesity and BMI of <30 kg/m 2 . The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1-L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to nonobese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50-59, 60-69 and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the nonobese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity -57%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.