An information model is outlined, which represents an intelligent system of metallographic analysis in the form of a set of subsystems, the interaction of which ensures the performance of metallographic analysis functions. The structure of the information storage subsystem for metallographic analysis is presented. The deployment model of an intelligent metallographic analysis system is proposed and described. The paper outlines the approach to the presentation of an expert subsystem for metallographic quality control of metals based on a neural network. The process of finding a close precedent in metallographic analysis with reference to a multilayer neural network is described. An intelligent metallographic analysis system is described, which based on proposed information model. A specialized software of an intelligent metallographic analysis system is presented. The functioning results of the developed system for processing images of steel microstructures to determine the steel quantitative parameters is presented.
In this paper, we describe the relevance of diagnosing the lining condition of steel ladles in metallurgical facilities. Accidents with steel ladles lead to losses and different types of damage in iron and steel works. We developed an algorithm for recognizing thermograms of steel ladles to identify burnout zones in the lining based on the technology and design of neural networks. A diagnostic system structure for automated evaluating of the technical conditions of steel ladles without taking them out of service has been developed and described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.