This paper considers a possibility to obtain high-quality butt junctions of bimetallic sheets from steel clad with a layer of titanium, with the use of barrier layers. The task that was tackled related to preventing the formation of Ti-Fe intermetallic phases (IMPs) between the steel and titanium layer. The barrier layers (height ~0.5 mm) of vanadium and copper alloys were surfaced by arc techniques while minimizing the level of thermal influence on the base metal. To this end, plasma surfacing with a current-driving wire and pulsed MAG surfacing were used. The obtained samples were examined by methods of metallography, X-ray spectral microanalysis, durometric analysis. It has been established that when a layer of vanadium is plated on the surface of titanium, a defect-free structure of variable composition (53.87–65.67) wt % Ti with (33.93–45.54) wt % V is formed without IMPs. The subsequent surfacing of steel on a layer of vanadium leads to the formation of eutectics (hardness up to 5,523 MPa) in the fusion zone, as well as to the evolution of cracks. To prevent the formation of IMPs, a layer of bronze CuBe2 was deposited on the surface of vanadium. The formed layer contributed to the formation of a grid of hot cracks. In the titanium-vanadium-copper transition zones (0.1–0.2 mm wide), a fragile phase was observed. To eliminate this drawback, the bronze CuBe2 was replaced with bronze CuSi3Mn1; a defect-free junction was obtained. When using a barrier layer with CuSi3Mn1, a defect-free junction was obtained (10–30 % Ti; 18–50 % Fe; 5–25 % Cu). The study reported here makes it possible to recommend CuSi3Mn1 as a barrier layer for welding bimetallic sheets "steel-titanium". One of the applications of the research results could be welding of longitudinally welded pipes of main oil and gas pipelines formed from bimetallic sheets of steel clad with titanium.
This paper reports the experimental study carried out to establish the dependence of the thermal conductivity of polypropylene-based nanocomposites filled with carbon nanotubes on the main parameter of the temperature regime of their manufacturing ‒ the level of overheating a polymer melt relative to its melting point. The study has been conducted for nanocomposites that were manufactured by applying a method based on the mixing of components in the polymer melt applying a special disk extruder. During the composite manufacturing process, the level of melt overheating varied from 10 to 75 K, with the mass share of filler ranging from 0.3 to 10.0 %. It is shown that increasing the overheating of a polymer melt causes an increase in the thermal conductivity of the composites. However, when the overheating has reached a certain value, its further growth does not increase the thermal conductivity of nanocomposites. Based on the established pattern, the rational level of this overheating has been determined. That resolves the tasks of manufacturing highly heat-conducting nanocomposites and implementing appropriate energy-saving technology. Data have been acquired on the effects of the impact of the amount of polymer melt overheating on the values of the first and second percolation thresholds for the examined nanocomposites. It is established that the value of the first percolation threshold is more sensitive to the specified amount of overheating. The dependences of the density of the examined composites on the level of polymer melt overheating have been derived. The correlation between a given dependence and the nature of a corresponding change in the thermal conductivity of the composites has been established. Applying the proposed highly heat-conducting nanocomposites is promising for micro and nanoelectronics, energy, etc.
The application of the heat recovery- system with the combined use of the recycled heat of the municipal boiler plants is substantiated. The thermal characteristics of the system and the levels of increase in the efficiency of the boiler with a rational ratio of the areas of heat exchange surfaces of water- and air-heating equipment of this system for different regions of Ukraine are determined.
Встановлено закономірності структуроутворення під час кристалізації полімерних нанокомпозитів на основі поліетилену, наповненого вуглецевими нанотрубками. Виявлено ефекти впливу на ці закономірності таких факторів, як масова частка наповнювача, швидкість охолодження і метод отримання композитів. Розгляду підлягали нанокомпозити, отримані методом, що базується на змішуванні компонентів у сухому вигляді і в розплаві полімеру. Виконано зіставлення експериментальних екзотерм кристалізації для досліджуваних композитів за зазначених методів їх отримання. З використанням екзотерм кристалізації і рівняння нуклеації отримано дані про особливості структуроутворення на початковій стадії кристалізації композитів. Встановлено, що на цій стадії наявний площинний і об'ємний механізм структуроутворення за деякого переважання останнього. Виконано аналіз закономірностей структуроутворення на стадії кристалізації в об'ємі композитів у цілому в припущенні наявності двох механізмів кристалоутворення, перший з яких пов'язаний з кристалізацією на флуктуаціях густини полімеру, другий – із кристалізацією, в якій роль її центрів відіграють частинки наповнювача. Показано, що механізми кристалізації на частинках наповнювача істотно залежать від його масової частки і методу отримання композиційних матеріалів.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.