Abstract.A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy -0.2 vol% carbon black (CB) and epoxy -0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy -CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy -CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature) and high electrical conductivity.
The availability of carbyne in carbon nanotubes (CNTs) induces intrinsic stiffening and strengthening of CNTs, and is exploited for the very first time in this report to process epoxy nanocomposites with improved mechanical and electrical properties. The existence of encapsulated carbyne in double wall CNTs (DWNTs) was confirmed using High Resolution Transmission Electron Microscopy (HR-TEM). The intrinsic stiffening of carbyne reinforced DWNTs (c-DWNTs) in epoxy matrix was visually confirmed by Field Emission Scanning Electron Microscopy (FE-SEM). In comparison to raw DWNTs reinforced epoxy nanocomposites, c-DWNTS imparted modest but improved tensile strength (5.6%), elastic modulus (9.7%), failure strain (9.9%) and fracture toughness (13%) to their respective epoxy nanocomposites. This inaugural study on carbyne-filled polymer composites also reports a minor but distinct increase (an order of magnitude) in the electrical conductivity for c-DWNTs filled epoxy nanocomposites compared to DWNT filled epoxy nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.