The use in radio communication systems of phase modulation of a signal intended for the transmission of useful information in a continuous mode creates the problem of frequency uncertainty of the received signal by frequency.In practice, it is not possible to implement frequency estimation in the conditions of chat uncertainty of the signal in the channel with low energy of the signal received in the continuous mode. Therefore, the estimation of the carrier frequency offset of the signal received relative to the nominal value is carried out before other synchronization procedures are included, namely: phase synchronization and clock synchronization. The paper generalizes the procedure and forms a two-step procedure for calculating the carrier frequency of the phase-modulated signal of a radio communication system for data transmission in a continuous mode, taking into account the condition of uncertainty of all signal parameters. Achieving the minimum observation interval in the given order of calculation of the carrier frequency is ensured by the use of the fast Fourier transform function. In order to analyze the effectiveness of this procedure, the process of estimating the carrier frequency of the phase-modulated signal of the radio communication system during data transmission in continuous mode and functional dependences of the maximum frequency in the signal spectrum and the minimum variance of carrier frequency estimation. This procedure allows a two-stage assessment of the carrier frequency according to the rule of maximum likelihood, taking into account the condition of uncertainty of all parameters of the signal received by the satellite communication system in a continuous mode with a minimum observation interval. Achieving the minimum observation interval in the given order of carrier frequency estimation is ensured by using the fast Fourier transform function and two estimation steps. The analysis of the efficiency of the estimation of the specified order was carried out on the basis of comparison of a ratio of the received minimum variance of an estimation of a carrier frequency and theoretically possible border of the minimum variance.
The use in radio communication systems of phase modulation of a signal intended for the transmission of useful information in a continuous mode creates the problem of frequency uncertainty of the received signal by frequency.In practice, it is not possible to implement frequency estimation in the conditions of chat uncertainty of the signal in the channel with low energy of the signal received in the continuous mode. Therefore, the estimation of the carrier frequency offset of the signal received relative to the nominal value is carried out before other synchronization procedures are included, namely: phase synchronization and clock synchronization. The paper generalizes the procedure and forms a two-step procedure for calculating the carrier frequency of the phase-modulated signal of a radio communication system for data transmission in a continuous mode, taking into account the condition of uncertainty of all signal parameters. Achieving the minimum observation interval in the given order of calculation of the carrier frequency is ensured by the use of the fast Fourier transform function. In order to analyze the effectiveness of this procedure, the process of estimating the carrier frequency of the phase-modulated signal of the radio communication system during data transmission in continuous mode and functional dependences of the maximum frequency in the signal spectrum and the minimum variance of carrier frequency estimation. This procedure allows a two-stage assessment of the carrier frequency according to the rule of maximum likelihood, taking into account the condition of uncertainty of all parameters of the signal received by the satellite communication system in a continuous mode with a minimum observation interval. Achieving the minimum observation interval in the given order of carrier frequency estimation is ensured by using the fast Fourier transform function and two estimation steps. The analysis of the efficiency of the estimation of the specified order was carried out on the basis of comparison of a ratio of the received minimum variance of an estimation of a carrier frequency and theoretically possible border of the minimum variance.
Non-terrestrial communication technologies will become a key component for the development of future 6th generation (6G) networks. Potentials, implementation prospects, problems and solutions for non-terrestrial telecommunications remain open areas for future research. The article discusses the use of millimeter and optical wavelengths in various configurations of multilevel space communications using LEO satellites, stratospheric platforms and unmanned repeaters. The comparison of the capacity of the Shannon channel for various multi-level scenarios of the satellite communication line is carried out. The directions of research are analyzed to ensure the continuity of communication, adaptation to weather conditions, and achieving a throughput of up to 100 Gbit/s.
Non-terrestrial communication technologies will become a key component for the development of future 6th generation (6G) networks. Potentials, implementation prospects, problems and solutions for non-terrestrial telecommunications remain open areas for future research. The article discusses the use of millimeter and optical wavelengths in various configurations of multilevel space communications using LEO satellites, stratospheric platforms and unmanned repeaters. The comparison of the capacity of the Shannon channel for various multi-level scenarios of the satellite communication line is carried out. The directions of research are analyzed to ensure the continuity of communication, adaptation to weather conditions, and achieving a throughput of up to 100 Gbit/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.