Ovothiol A (OSH) is one of the strongest natural antioxidants. So far, its presence was found in tissues of marine invertebrates, algae and fish. Due to very low pKa value of the SH group, under physiological conditions, this compound is almost entirely present in chemically active thiolate form and reacts with ROS and radicals significantly faster than other natural thiols. In biological systems, OSH acts in tandem with glutathione GSH, with OSH neutralizing oxidants and GSH maintaining ovothiol in the reduced state. In the present work, we report the rate constants of OSH oxidation by H2O2 and of reduction of oxidized ovothiol OSSO by GSH and we estimate the Arrhenius parameters for these rate constants. The absorption spectra of reaction intermediates, adduct OSSG and sulfenic acid OSOH, were obtained. We also found that OSH effectively quenches the triplet state of kynurenic acid with an almost diffusion-controlled rate constant. This finding indicates that OSH may serve as a good photoprotector to inhibit the deleterious effect of solar UV irradiation; this assumption explains the high concentrations of OSH in the fish lens. The unique antioxidant and photoprotecting properties of OSH open promising perspectives for its use in the treatment of human diseases.
In this work, we for the first time report the identification of UV filters in the bird eye lens. We found that lenses of some raptors (black kite, common buzzard) and waterfowl (birds from Podicipedidae family) contain unusually high levels of reduced nicotinamide adenine dinucleotide (NADH)—a compound with high absorption in the UV-A range with a maximum at 340 nm. The lens metabolome of these birds also features an extremely low [NAD +]/[NADH] ratio. Chemometric analysis demonstrates that the differences between the metabolomic compositions of lenses with low and high NADH abundances should be attributed to the taxonomic features of bird species rather to the influence of the low [NAD +]/[NADH] ratio. We attributed this observation to the low metabolic activity in lens fiber cells, which make up the bulk of the lens tissue. Photochemical measurements show that properties of NADH as a UV filter are as good as that of UV filters in the human lens, including strong absorption in the UV-A spectral region, high photostability under both aerobic and anaerobic conditions, low yields of triplet state, fluorescence, and radicals under irradiation. Lenticular UV filters protect the retina and the lens from photo-induced damages and improve the visual acuity by reducing chromatic aberrations; therefore, the results obtained contribute to our understanding of the extremely high acuity of the raptor vision.
Metabolomics is a powerful set of methods that uses analytical techniques to identify and quantify metabolites in biological samples, providing a snapshot of the metabolic state of a biological system. In medicine, metabolomics can help diagnose diseases, reveal molecular basis of a disease, and monitor treatment responses, while in agriculture, it can improve crop yields and plant breeding. However, animal metabolomics faces several challenges due to the complexity and diversity of animal metabolomes, the lack of standardized protocols, and the difficulty in interpreting metabolomic data. The current dataset includes quantitative metabolomic profiles of eye lens tissues from 26 bird species (111 specimens) that can aid researchers in developing new experiments, mathematical models, and integrations with other omics data. The dataset includes raw 1H NMR spectra, protocols for sample preparation, and data preprocessing with the final table containing information on 89 reliably identified and quantified metabolites. The dataset is quantitative, making it relevant for supplementing with new specimens or comparison groups, followed by data mining and expected new interpretations. It was obtained from bird specimens collected in compliance with ethical standards and reveals potential differences in metabolic pathways due to phylogenetic difference or environmental exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.