SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca 2 þ -dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.
Synaptic vesicle recycling involves AP‐2/clathrin‐mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue‐specific AP‐1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP‐1–σ1A complex mediates protein sorting between the trans‐Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B‐deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B‐deficient mice have reduced motor coordination and severely impaired long‐term spatial memory. These data reveal a molecular mechanism for a severe human X‐chromosome‐linked mental retardation.
BackgroundDifferent non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria.ResultsWe have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response.ConclusionLabeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.
The intracellular adaptor protein SH3P7 is the mammalian ortholog of yeast actin‐binding protein 1 and thus alternatively named as mAbp1 (or HIP55). Structural properties, biochemical analysis of its interaction partners and siRNA studies implicated mAbp1 as an accessory protein in clathrin‐mediated endocytosis (CME). Here, we describe the generation and characterization of mice deficient for SH3P7/mAbp1 owing to targeted gene disruption in embryonic stem cells. Mutant animals are viable and fertile without obvious deficits during the first weeks of life. Abnormal structure and function of organs including the spleen, heart, and lung is observed at about 3 months of age in both heterozygous and homozygous mouse mutants. A moderate reduction of both receptor‐mediated and synaptic endocytosis is observed in embryonic fibroblasts and in synapses of hippocampal neurons, respectively. Recycling of synaptic vesicles in hippocampal boutons is severely impaired and delayed four‐fold. The presynaptic defect of SH3P7/mAbp1 mouse mutants is associated with their constricted physical capabilities and disturbed neuromotoric behaviour. Our data reveal a nonredundant role of SH3P7/mAbp1 in CME and places its function downstream of vesicle fission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.