МЕТОДИКА РАСЧЁТА ДИНАМИКИ СИСТЕМЫ ТУРБОАГРЕГАТ-ФУНДАМЕНТ-ОСНОВАНИЕ ЭНЕРГОБЛОКОВ ПРИ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЯХ АННОТАЦИЯ Представлены основные особенности методического обеспечения, разработанного на основе метода конечных элементов для расчета динамики системы турбоагрегат-фундамент-основание при сейсмических воздействиях. Элементы расчетной схемы моделируются произвольно ориентированными стержнями и сосредоточенными массами с моментами инерции, которые соединяются абсолютно жестко или с помощью упругодемпферных связей. В стержневых элементах с распределенными параметрами учитываются все виды деформаций, которые имеют место при колебаниях. Сейсмическое нагружение моделируется переменными инерционными силами, полученными из экспериментальных акселерограмм землетрясений. При исследовании динамических процессов в системе турбоагрегат-фундамент-основание при сейсмических воздействиях используются расчетные модели различного уровня сложности. Ключевые слова: турбоагрегат, сейсмическое воздействие, колебания, стержневой конечный элемент, упругодемпферная связь.
За допомогою розробленої на основі методу скінченних елементів розрахункової методики проведено аналіз навантаженості елементів кріплення турбоагрегату на фундаменті для різних варіантів їх пружно-демпферних характеристик. Розрахункова модель складалась із довільно орієнтованих стержнів та зосереджених мас. Оцінено навантаженість елементів упорного підшипника, який у більшості випадків має найменший запас міцності (несної здатності). Показано, що наявність зазорів у елементах кріплення викликає значне підвищення динамічних навантажень. Розрахунки проведено для синтезованої сейсмограми семибального землетрусу, яка викликає найбільш широкий спектр навантаження в порівнянні з іншими реальними сейсмограмами. Ключові слова: турбоагрегат, фундамент, сейсмічне навантаження, нелінійні пружно-демпферні елементи. П. П. ГОНТАРОВСКИЙ, Н. Г. ГАРМАШ ОЦЕНКА НАГРУЖЕННОСТИ НЕЛИНЕЙНЫХ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ СИСТЕМЫ ТУРБОАГРЕГАТ-ФУНДАМЕНТ-ОСНОВАНИЕ ПРИ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЯХ С помощью разработанной на основе метода конечных элементов расчетной методики проведен анализ нагруженности элементов крепления турбоагрегата на фундаменте для различных вариантов их упруго-демпферных характеристик. Расчетная модель состояла из произвольно ориентированных стержней и сосредоточенных масс. Проведена оценка нагруженности элементов упорного подшипника, который в большинстве случаев имеет наименьший запас прочности (несущей способности). Показано, что наличие зазоров в элементах крепления вызывает значительное повышение динамических нагрузок. Расчеты проведены для синтезированной сейсмограммы семибалльного землетрясения, которая вызывает наиболее широкий спектр нагружения по сравнению с другими реальными сейсмограммами. Ключевые слова: турбоагрегат, фундамент, сейсмическая нагрузка, нелинейные упруго-демпферные элементы. P. GONTAROVSKIY, N. GARMASH ESTIMATING THE LOADING OF NONLINEAR ELEMENT CONNECTIONS IN THE UNIT-FOUNDATION-BASE TURBINE SYSTEM AT SEISMIC ACTIVITIES A loading of the fasteners of turbine unit on the foundation exposed to seismic activities was analyzed for different options of their elastically damped characteristics. The software and computation methods developed on the basis of the method of finite elements have been used. The calculation model of the dynamic turbounit-foundation-base system consisted of arbitrary oriented rods and concentrated masses that are rigidly interconnected or connected by linear and nonlinear elastically deformed elements. Rod finite elements with distributed parameters allow us to take into consideration all the types of deformations that take place at rod vibrations. The computation model allows us to take into consideration structural peculiarities of the system and also the peculiarities of its behavior at possible earthquakes. During the computations special attention was paid to the thrust bearing that in most cases has the lowest safe load factor (load-carrying capacity). It is shown that the availability of gaps in fastening elements results in a considerable increase of dynamic loads. Taking i...
Ensuring the efficient and reliable safe operation of ground special equipment of various types, aircrafts is an important and urgent problem. Preservation of the strength, protective properties and transparency of the glazing of machinery cabins in a wide range of temperatures under various strength influences is one of the key components of this problem. Multilayer packages made of different types of glass are used for special equipment glazing. These packages are connected to each other with adhesive polymer materials. Electrically heated glazing, which allows to avoid the special equipment icing, as well as to protect the viewing area from fogging, is used for reliable and failure-free operation of special equipment at low temperatures. Based on this, an important problem that affects the efficiency of the use of special equipment is to ensure the reliable operation of electric glass heating. With the help of a software package developed on the basis of the finite element method for the analysis of the structures thermal stress in 3D formulation, which allows to consider a wide class of practical problems of varying complexity, the problems of non-stationary and stationary thermal conductivity and thermal elasticity for a trapezoidal frontal electrically heated multilayer glazing are solved. A study of the thermal stress state of glazing with an electric heating system, which allows to avoid freezing of glass operating at low temperatures, was carried out. The reasons for which the delamination of the multi-layer glazing may occur (impermissible temperature modes, mechanical strength effects, violation of operating conditions) are determined. Multilayer glazing with an electric heating system is used for aircrafts, military equipment, land transport, which can be operated at different temperatures. In view of this, the study of their thermal stress state and determination of possible causes of delamination allows to ensure the operation reliability and increase the efficiency of the use of special equipment in different climatic conditions. It is planned to carry out further studies of the glass block thermal stress state taking into ac-count the thermostat operation and determining the temperature sensors location points, as well as changes in the physical properties of materials and the power of the heating element with temperature changes.
539.4:621.165 I. I. Melezhyk, and T. V. ProtasovaThe thermostressed state and crack growth resistance of rotors are analyzed for various operating conditions using the procedures developed for their calculation. The kinetics of transverse cracks under high-cycle loading is considered.The majority of power-generating units of Ukrainian nuclear power plants (NPP) that generate about 52% of electric power are operating for than 20 years. The specified life of two power units of the Rivnenska NPP (above 30 years) will be exhausted in 2010-2011, and that of one power unit of the Yuzhno-Ukrainska NPP in 2012. In this connection, their equipment, including turbine plants, requires a comprehensive approach to evaluate the technical state, to assess the lifetime and to extend it. In contrast to high-temperature steam turbines, the material creep in NPP moist steam turbines is absent. Therefore, for assessing the damage in rotor elements it is important to determine the influence of low-cycle fatigue on the serviceability of the structure. As evidenced by operational experience, erosion-corrosion processes are decisive for NPP turbines.The most highly stressed areas in turbine rotors under varying modes of operation were determined with the help of boundary conditions of heat exchange for restricted schedules of cold and hot starts of the turbo unit and scheduled unloading, the calculations of unsteady thermal fields and the thermal stress state of rotors using the finite element method [1]. In so doing, transient problems on heat conductance and thermal stress levels were solved using the same finite element mesh [2]. The investigations of stress-strain state of rotors during a hot start (HS) of the turbine unit included the steady mode of operation, a scheduled outage with no loss of vacuum, and cooling for 8 h. All rotors were double flow rotors with the symmetry plane located in the center, therefore, only their symmetrical halves were considered.In a high-pressure rotor (HPR) of the NPP turbine (model K-100-60/1500), the maximum stress intensity is attained during a hot start of the turbine unit after its shutdown for 8 h and is 195 MPa in gaining 400 MW of power. The isothermal lines and stress intensity distribution corresponding to this case are presented in Fig. 1. The maximum stress intensity is attained on the internal surface of the rotor beneath the 5th stage and in disc grooves (Fig. 1b).Circumferential stresses on the internal surface of the rotor do not exceed their intensity of 220 MPa, whereas compressive axial stresses in disc grooves (190 MPa) are maximum. During the cold start (CS) period and in gaining 100 MW of power, the stress intensity in the HPR amounts to 170 MPa on the internal surface and is maximal during the whole start-stop period.For a medium-pressure rotor (MPR), the maximum stresses take place during the cold start of the turbine unit and in gaining 250 MW of power. In this case, the maximum radial temperature drop of 140°C is observed in the region near the 1st stage. The isothermal lin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.