Plants of the Crassulaceae family are natural accumulators of many medicinal secondary metabolites (SM). This article describes the study of morphophysiological, anatomic and phytochemical responses of immature plants of Rhodiolla semenovii under water deficit and (or) cold-stress conditions. Changes in biomass production due to water content in plant tissues such as a decrease in water deficit and an increase in cold stress were revealed. A significant decrease in the efficiency of the photosynthetic apparatus under stress conditions was noted, based on the parameters quantum efficiency of Photosystem II and electron transport rate and energy dissipated in Photosystem II. The greatest decrease in efficiency was pointed out in conditions of water shortage. The anatomical modulations of root and shoot of R. semenovii under stress conditions were found. For the first time, a detailed study of the chemical composition of the ethanol extract of root and shoot of R. semenovii under stress was carried out using gas chromatography–mass spectrometry. The qualitative and quantitative composition of SM associated with acclimation to the effects of abiotic stresses was determined. Both nonspecific and specific phytochemical changes caused by the action of water deficiency and cold treatment were identified. It has been shown that the antioxidant system in plant tissues is complex, multicomponent, depending on a number of natural and climatic factors. Further research should be focused on the use of abiotic stressors for the targeted synthesis of bioactive SMs valuable for pharmaceutical use.
The role of the root in water supply and plant viability is especially important if plants are subjected to stress at the juvenile stage. This article describes the study of morphophysiological and cytological responses, as well as elements of the anatomical structure of primary roots of three wheat species, Triticum monococcum L., Triticum dicoccum Shuebl., and Triticum aestivum L., to osmotic stress. It was shown that the degree of plasticity of root morphology in water deficit affected the growth and development of aboveground organs. It was found that in conditions of osmotic stress, the anatomical root modulations were species-specific. In control conditions the increase in absolute values of root diameter was reduced with the increase in the ploidy of wheat species. Species-specific cytological responses to water deficit of apical meristem cells were also shown. The development of plasmolysis, interpreted as a symptom of reduced viability apical meristem cells, was revealed. A significant increase in enzymatic activity of superoxide dismutase under osmotic stress was found to be one of the mechanisms that could facilitate root elongation in adverse conditions. The tetraploid species T. dicoccum Shuebl. were confirmed as a source of traits of drought tolerant primary root system for crosses with wheat cultivars.
Rhodiola semenovii Boriss. (Regel and Herder) might be a promising replacement for the well-known but endangered Rhodiola rosea L. In this research, the metabolic profile of R. semenovii, including drug-active and stress-resistant components, was studied in the context of source–sink interactions in situ in the dynamics of growth and development. Gas chromatography with mass spectrometric detection and liquid chromatography methods were used. The data obtained allow for assumptions to be made about which secondary metabolites determine the level of stress resistance in R. semenovii at different stages of ontogeny in situ. For the first time, an expansion in the content of salidroside in the above-ground organs, with its maximum value during the period of seed maturation, and a significant decrease in its content in the root were revealed in the dynamics of vegetation. These results allow us to recommend collecting the ground component of R. semenovii for pharmaceutical purposes throughout the seed development stage without damaging the root system.
In this article, for the first time, an experimental study of the effect of mild and moderate osmotic stress, NaCl content and the effect of low positive temperature on photosynthetic activity and composition of metabolites of immature plants Sedum hybridum L. is reported. In this representative of the genus Sedum adapted to arid conditions and having the properties of a succulent, a change in photosynthetic activity and an increase in the level of protective metabolites in the shoots were revealed when exposed to mild and moderate stress factors. The results of this study can be used in work on the adaptation of succulent plants to arid conditions, environmental monitoring and work on the directed induction of valuable secondary metabolites in succulents to obtain new herbal medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.