The function of cytochrome b 559 in photosystem II (PSII) was investigated using a mutant created in tobacco in which the conserved phenylalanine at position 26 in the -subunit (PsbF) was changed to serine (Bock, R., Kö ssel, H., and Maliga, P. (1994) EMBO J. 13, 4623-4628). The mutant grew photoautotrophically, but the amount of PSII was reduced and the ultrastructure of the chloroplast was dramatically altered. Very few grana stacks were formed in the mutant. Although isolated PSII-enriched membrane fragments showed low PSII activity, electron paramagnetic resonance indicated the presence of functional PSII. Difference absorption spectra showed that the cytochrome b 559 contained heme. The plastoquinone pool was largely reduced in dark-adapted leaves of the mutant, based on chlorophyll fluorescence and thermoluminescence measurements. We therefore propose that cytochrome b 559 plays an important role in PSII by keeping the plastoquinone pool and thereby the acceptor side of PSII oxidized in the dark. Structural alterations as induced by the single Phe 3 Ser point mutation in the transmembrane domain of PsbF evidently inhibit this function.
Mixed photosystem II (PSII) samples consisting of Cl(-)-depleted and active, or Ca(2+)-depleted and active PSII enriched membrane fragments, respectively, were investigated with respect to their susceptibility to light. In the presence of Cl(-)-depleted PSII, active centers were damaged more severely, most likely caused by a higher amount of reactive oxygen species formed in the nonfunctional centers. Cl(-) depletion led to an increased H(2)O(2) production, which seemed to be responsible for the stimulation of PSII activity loss. To distinguish between direct H(2)O(2) formation by partial water oxidation and indirect H(2)O(2) formation by oxygen reduction involving the prior formation of O(2)(-?), the production of reactive oxygen species was followed by spin trapping EPR spectroscopy. All samples investigated, i.e. PSII with a functional water splitting complex, Ca(2+)- and Cl(-)-depleted PSII, produced upon illumination O(2)(-?) and OH(?) radicals on the acceptor side, while Cl(-)-depleted PSII produced additionally OH(?) radicals originating from H(2)O(2) formed on the donor side of PSII.
The function of cytochrome b559 (cyt b559) in photosystem II (PSII) was studied in a tobacco mutant in which the conserved phenylalanine at position 26 in the beta-subunit was changed to serine. Young leaves of the mutant showed no significant difference in chloroplast ultra structure or in the amount and activity of PSII, while in mature leaves the size of the grana stacks and the amount of PSII were significantly reduced. Mature leaves of the mutant showed a higher susceptibility to photoinhibition and a higher production of singlet oxygen, as shown by spin trapping electron paramagnetic resonance (EPR) spectroscopy. Oxygen consumption and superoxide production were studied in thylakoid membranes in which the Mn cluster was removed to ensure that all the cyt b559 was present in its low potential form. In thylakoid membranes, from wild-type plants, the larger fraction of superoxide production was 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive. This type of superoxide formation was absent in thylakoid membranes from the mutant. The physiological importance of the plastoquinol oxidation by cyt b559 for photosynthesis is discussed.
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII.
The recombinant form of the extrinsic 23 kDa protein (psbP) of Photosystem II (PSII) was studied with respect to its capability to bind Mn. The stoichiometry was determined to be one manganese bound per protein. A very high binding constant, K(A)=10(-17) M(-1), was determined by dialysis of the Mn containing protein against increasing EDTA concentration. High Field EPR spectroscopy was used to distinguish between specific symmetrically ligated Mn(II) from those non-specifically Mn(II) attached to the protein surface. Upon Mn binding PsbP exhibited fluorescence emission with maxima at 415 and 435 nm when tryptophan residues were excited. The yield of this blue fluorescence was variable from sample to sample. It was likely that different conformational states of the protein were responsible for this variability. The importance of Mn binding to PsbP in the context of photoactivation of PSII is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.