ABSTRACT:Bisphenol A (BPA) is a weak estrogen. Pharmacokinetic studies of BPA have demonstrated a rapid and extensive metabolism of BPA to the nonestrogenic BPA-monoglucuronide (BPA-gluc). Some investigators have reported that BPA was found at parts per billion concentrations in the tissues or urine of humans without known exposure to BPA. This work developed a rapid and sensitive method for the determination of BPA and BPA-gluc in plasma and urine based on liquid chromatography-tandem mass spectrometry. The liquid chromatography-electrospray ionization-tandem mass spectrometry method for quantitation of BPA and BPA-gluc uses stable isotope-labeled internal standards. A linear ion trap mass spectrometer permits identification and quantitation of BPAgluc and BPA without sample workup. Development of separation conditions reduced the BPA-background in solvent samples to below 2.5 pmol/ml for BPA. Limit of quantitation (LOQ) for BPA in control urine was 15 pmol/ml; LOQ for BPA-gluc was 65 pmol/ml. Application of the method to urine samples from human subjects (n ؍ 6) after administration of 25 g of BPA/person (estimated maximum human daily intake) permitted the determination of excretion kinetics for BPA-gluc; BPA was below the LOD in all except two of the samples. In urine or blood samples of human subjects (n ؍ 19) without intentional exposure to BPA, BPA concentrations were always below the limit of detection (Ϸ2.5 pmol/ml) with or without prior glucuronidase treatment. The results show that care is required for analysis of BPA and its major metabolite BPA-gluc. The LOD obtained and the absence of detectable levels of BPA in samples from individuals suggests that general exposure of humans to BPA is much lower than the worst-case exposure scenario developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.