Numerical simulations are presented for the transient and steady-state response of a model electrodiffusive cell with a bipolar ion-selective membrane under electric current. The model uses a continuum Poisson-Nernst-Planck theory including source terms to account for the catalytic second Wien effect between ionogenic groups in the membranes and resolves the Debye layers at interfaces. The resulting electric field at the membrane junction is increased by as much as four orders of magnitude in comparison to the field external to the membrane. This leads to a significant amplification of the second Wien effect, creating an increased ionic flux due to the catalytic decomposition of water. The effect also induces an exaltation effect wherein the salt ion flux undergoes a concomitant increase as well. The interplay of effects results in a unique over-limiting current mechanism due to concentration polarization internal, rather than external, to the membranes. In addition to the case of two equal but oppositely charged membranes under the standard simplifying assumption of equal ionic diffusivities, two variations on this model are studied. Asymmetric diffusivities, representative of the actual mobility difference in dissociated water ions, and the effect of the membrane charge density ratio were also considered. The latter elucidates an overlimiting current shift mechanism for DNA adsorption on anion-selective membranes proposed by Slouka et al. [Langmuir 29, 8275 (2013)]. The former provides more realistic picture of multi-ion transport and demonstrates a surprising steady-state effect due to the asymmetry in the diffusivity of hydroxide and hydronium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.