Background: Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes. Results: Here, we have identified and functionally characterised a VP/OT-type signalling system comprising the neuropeptide asterotocin and its cognate G-protein coupled receptor in the starfish (sea star) Asterias rubens, a deuterostomian invertebrate belonging to the phylum Echinodermata. Analysis of the distribution of asterotocin and the asterotocin receptor in A. rubens using mRNA in situ hybridisation and immunohistochemistry revealed expression in the central nervous system (radial nerve cords and circumoral nerve ring), the digestive system (including the cardiac stomach) and the body wall and associated appendages. Informed by the anatomy of asterotocin signalling, in vitro pharmacological experiments revealed that asterotocin acts as a muscle relaxant in starfish, contrasting with the myotropic actions of VP/OT-type neuropeptides in vertebrates. Furthermore, in vivo injection of asterotocin had a striking effect on starfish behaviour-triggering fictive feeding where eversion of the cardiac stomach and changes in body posture resemble the unusual extra-oral feeding behaviour of starfish.
Conclusions:We provide a comprehensive characterisation of VP/OT-type signalling in an echinoderm, including a detailed anatomical analysis of the expression of both the VP/OT-type neuropeptide asterotocin and its cognate receptor. Our discovery that asterotocin triggers fictive feeding in starfish provides important new evidence of an evolutionarily ancient role of VP/OT-type neuropeptides as regulators of feeding in animals.
Recently it has been shown that there is impaired cerebral endothelial function in many chronic neurodegenerative disorders including Alzheimer's and Huntington's disease. Such problems have also been reported in Parkinson's disease, in which α-synuclein aggregation is the pathological hallmark. However, little is known about the relationship between misfolded α-synuclein and endothelial function. In the present study, we therefore examined whether α-synuclein preformed fibrils affect endothelial function in vitro. Using a well-established endothelial cell model, we found that the expression of tight junction proteins, in particular zona occludens-1 and occludin, was significantly perturbed in the presence of fibril-seeded neurotoxicity. Disrupted expression of these proteins was also found in the postmortem brains of patients dying with Parkinson's disease. There was though little evidence in vitro of functional impairments in endothelial cell function in terms of transendothelial electrical resistance and permeability. This study therefore shows for the first time that misfolded α-synuclein can interact and affect the cerebral endothelial system, although its relevance to the pathogenesis of Parkinson's disease remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.