Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.
Avian influenza (AI) is a disease caused by influenza viruses type A that belong to the Orthomyxoviridae family. AI induces high economic losses in poultry production
worldwide. Due to a possible outbreak, a national surveillance program was needed. From April to July 2016, 152 industrial poultry farms were randomly sampled. All samples were analyzed by
competitive ELISA for Influenza type A viruses. Suspicious and positive sera were further analyzed by Hemagglutination Inhibition (HI) in order to serotype H5 or H7 low pathogenic avian
influenza virus (LPAIV). The farms sampled showed 94.08%, 3.95% and 1.97% of negative, positive and suspicious results, respectively. However, serotyping revealed all positive and suspicious
samples were negative to H5/H7 LPAIV. Our results show the absence of AI in the mainland Ecuadorian industrial poultry production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.