Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.
In this work we report the results of theoretical analysis of the effect of the thermal environment on the thermoelectric efficiency of molecular junctions. The environment is represented by two thermal phonon baths associated with the electrodes, which are kept at different temperatures. The analysis is carried out using the Buttiker model within the scattering matrix formalism to compute electron transmission through the system. This approach is further developed so that the dephasing parameters are expressed in terms of relevant energies, including the thermal energy, strengths of coupling between the molecular bridge and the electrodes and characteristic energies of electron-phonon interactions. It is shown that the latter significantly affect thermoelectric efficiency by destroying the coherency of electron transport through the considered system.
A semiclassical theory for magnetotrasport in a quantum Hall system near filling factor ν = 1/2 based on the Composite Fermions physical picture is used to analyze the effect of local flattening of the Composite Fermion Fermi surface (CF-FS) upon magnetoacoustic oscllations. We report on calculations of the velocity shift and attenuation of a surface acoustic wave (SAW) which travels above the two-dimensional electron system, and we show that local geometry of the CF-FS could give rise to noticeable changes in the magnitude and phase of the oscillations. We predict these changes to be revealed in experiments, and to be used in further studies of the shape and symmetries of the CF-FS. Main conclusions reported here could be applied to analyze magnetotransport in quantum Hall systems at higher filling factors ν = 3/2, 5/2 provided the Fermi-liquid-like state of the system.
Nanoscale recti ers are known to have signi cant nanoelectronic and nanoheatronic applications. In the present work we theoretically analyze rectifying properties of a junction including a couple of quantum dots asymmetrically coupled to the electrodes. The charge and heat current recti cation in the system is controlled by the dots occupation numbers and interdot Coulomb interactions. We examine the dependencies of the recti cation ratio on the electron energy levels on the dots, on the intensity of electron-electron interactions, on the gate and bias voltages and on the thermal gradients applied across the system. It is shown that the considered double-dot system possesses signi cant potentialities as a common as well as a heat diode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.