Persisters are suggested to be the products of a phenotypic variability that are quasi-dormant forms of regular bacterial cells highly tolerant to antibiotics. Our previous investigations revealed that a decrease in antibiotic tolerance of Escherichia coli cells could be reached through the inhibition of key enzymes of polyamine synthesis (putrescine, spermidine). We therefore assumed that polyamines could be involved in persister cell formation. Data obtained in our experiments with the polyamine-deficient E. coli strain demonstrate that the formation of persisters tolerant to netilmicin is highly upregulated by putrescine in a concentration-dependent manner when cells enter the stationary phase. This period is also accompanied by dissociation of initially homogenous subpopulation of persister cells to some fractions differing in their levels of tolerance to netilmicin. With three independent experimental approaches, we demonstrate that putrescine-dependent upregulation of persister cell formation is mediated by stimulation of rpoS expression. Complementary activity of putrescine and RpoS results in ~ 1000-fold positive effect on persister cell formation.
Persisters are rare phenotypic variants of regular bacterial cells that survive lethal antibiotics or stresses owing to slowing down of their metabolism. Recently, we have shown that polyamine putrescine can upregulate persister cell formation in Escherichia coli via the stimulation of rpoS expression, encoding a master regulator of general stress response. We hypothesized that rmf and yqjD, the stationary-phase genes responsible for ribosome inactivation, might be good candidates for the similar role owing to their involvement in translational arrest and the ability to be affected by polyamines. Using reporter gene fusions or single and multiple knockout mutations in rpoS, rmf and yqjD genes, we show in this work that (i) E. coli polyamines spermidine and cadaverine can upregulate persistence, like putrescine; (ii) polyamine effects on persister cell formation are mediated through stimulation of expression of rpoS, rmf and yqjD genes; (iii) these genes are involved in persister cell formation sequentially in a dynamic fashion as cells enter the stationary phase. The data obtained in this work can be used to develop novel tools relying on a suppression of polyamine metabolism in bacteria to combat persister cells as an important cause of infections refractory to antibiotics.
Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.