The response of watercress Lepidium sativum L. to the basic properties and toxicity of the soils has been established. When assessing the ecological state of the soil cover in residential areas of the city of Perm, the concept of the urban pedoсomplexes as combination of soil and man-made surface formations on the same soil-forming rocks within a certain functional zone was applied. The problem of choosing a test control was solved by using vermiculite with Knop solution as a root substrate. Phytotesting showed mainly satisfactory conditions of the upper layers of the soils in urban pedoсomplexes. At the same time, in the area of relatively old buildings, a trend towards the emergence of soil toxicity was revealed.
The environmental impact of deposit development can be indirect and can cause combined geochemical processes in ecosystems. These must be taken into consideration under environmental forecasting and environmental risk assessment. Soil degradation in the Taiga Forest is considered, within the area of Verkhnekamskoye potash deposit (Russia), as an example of such environmental transformation. Here, the mechanism and characteristics of the anthropogenic salinisation of alluvial soils under potash deposit development are newly described. It was found that there is a strong anthropogenic impact of the potash industry on valley soils where the contaminated Na-Cl groundwater discharges or is close to the surface. The valley soils are characterised by high salinity, and the sum of toxic salts in soils has reached 26%. Alluvial gley humic clay chloride saline soil (Gleyic Fluvisols (Salic, Loamic, Technic)) and secondary solonchak on alluvial humic clay soil sulfate-chloride gypsum-containing surface-gleyed (Chloridic Gleyic Fluvic Solonchak (Hypersalic, Loamic, Technic)) were formed in hydromorphic conditions. Morphological, physicochemical and mineralogical analyses were carried out. Under hydromorphic conditions, Chloridic Gleyic Fluvic Solonchak (Hypersalic, Loamic) was described to show a hydrotroillite layer and reddish-yellow iron-rich precipitates on its surface. The top soil horizon has the highest content of iron minerals (up to 84.9%) and Fe-bearing plant residues (up to 20%). Additionally, the spongy and gel-like organic materials, as well as the siliceous remains of diatoms, are enriched in Ca, Fe, Cl, K, Na, S and P. The lower soil horizon consists of black gel-like phases and hydrogen sulphide settings with a high content of plant residues. The insoluble part of the samples contains up to 84% hydrogoethite. The sources of iron in soils and bottom sediments include the iron-enriched Sheshma sediments speckled rocks, slurry material, halite wastes and soil minerals of alluvial gley soils.
Soil quality is its ability to perform the most important ecological functions, determining the conditions for the existence of biota and the quality of adjacent spheres -water and air. This article is devoted to the study of the remediated area after oil pollution, subject to overgrowing. A comprehensive assessment of the ability of the remediated soil to provide ecosystem services has been conducted. The properties of the remediated soil were assessed with traditional physicochemical methods. The ability of the established Technosol to create ecosystem services was assessed by microbiological activity, the composition of vegetation on the site, as well as by phytotesting to determine the redox activity of the test culture. Technosol properties (pH, organic carbon content, catalase activity, CO 2 efflux) varied greatly within the remediated area, which was also reflected in the phytotesting results. In certain areas of the investigated territory Technosol had a good ecological state, but in other areas it had a satisfactory and unsatisfactory state with moderate to severe toxicity. The residual content of oil products in the layer of 20-50 cm under the brought soil had a negative effect on the height of the test culture. A close correlation was established between the indicators of microbiological activity and the state of the test culture (height, weight, redox activity), together they reflected the ability of Technosol to provide ecosystem services or perform the ecological functions of the soil. Residual oil products and the associated certain toxicity did not interfere with the self-overgrowth process of Technosol.
The change in soil-forming processes and, as a result, in the ecosystem due to nearly 300-year long outflow of highly saline waters from ancient brine wells is considered for Perm Krai in Russia for the first time. The study area is located in the high floodplain of the Usolka River valley. Sodium-chloride ancient brine wells with mineralization of about 30 g/L flow in streams over the soil surface and enter the Usolka River. The paper considers three soil types at various distances from a saline stream. The main pedogenic processes are the sod-forming process and gleying in alluvial soils. Soils in Gleyic Fluvisols (background)—Gleyic Fluvisols (Sulfatic) (transition)—Solonchak (affected by sodium-chloride brines) series were studied in terms of occurring soil-forming processes. All studied soils are formed under hydromorphic conditions. It is evidenced by gleization. However, the morphological and physicochemical properties of the soils differ. The presence of water-soluble ions in the solonchak suggests that salinization is occurring. The sum of toxic salts was 0.94% which was several times higher than in the transition and background soils. The sodium adsorption ratio (SAR) ranged from 10.4 to 21.6, with a рН of 8.3–9.1. The saline soils were more alkaline (pH average 8.8 and 9.3) than the background soil (pH 8.1). SAR decreased significantly in the Solonchak—transition—background soil series from 16.9 to 0.7. The aforementioned observations, as well as physical properties of the saline soil, clearly show the entry of sodium into the solonchak adsorption complex, indicating the solonization process. The study area is characterized by the presence of salt-tolerant species of herbaceous plants and an obligate halophyte. Salicornia perennans Willd, a halophyte, was discovered in the wells’ discharge area at a distance of 0.2–1.5 m from saline streams. The analysis of the long-term impact of highly mineralized waters on the natural environment will aid in revealing and forecasting ecosystem changes caused by potash mining in Perm Krai for environmental risk assessment for new and existing potash enterprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.