The model problem of sedimentation of a solid spherical particle in a viscous fluid bordering two solid planar surfaces is considered. To find the solution of the hydrodynamic equations in the approximation of small Reynolds numbers with boundary conditions on a particle and on two planes, a procedure developed for numerical simulation of the dynamics of a large number of particles in a viscous fluid with one plane wall is used. The procedure involves usage of fictive particles located symmetrically to real ones with respect to the plane. To solve the problem of the real particle’s sedimentation in the presence of two planes, a system of fictive particles is introduced. An approximate solution was found using four fictive particles. Basing on this solution, numerical results are obtained on dynamics of particle deposition for the cases of planes oriented parallel and perpendicular to each other. In particular, the values of linear and angular velocities of a particle are found, depending on the distance to each plane and on the direction of gravity. In the limiting case, when one of the planes is infinitely far from the particle, we obtain known results on the dynamics of particle sedimentation along and perpendicular to one plane.
The model problem of sedimentation of a solid spherical particle in a viscous fluid bordering two solid planar surfaces is considered. To find the solution of the hydrodynamic equations in the approximation of small Reynolds numbers with boundary conditions on a particle and on two planes, a procedure developed for numerical simulation of the dynamics of a large number of particles in a viscous fluid with one plane wall is used. The procedure involves usage of fictive particles located symmetrically to real ones with respect to the plane. To solve the problem of the real particle’s sedimentation in the presence of two planes, a system of fictive particles is introduced. An approximate solution was found using four fictive particles. Basing on this solution, numerical results are obtained on dynamics of particle deposition for the cases of planes oriented parallel and perpendicular to each other. In particular, the values of linear and angular velocities of a particle are found, depending on the distance to each plane and on the direction of gravity. In the limiting case, when one of the planes is infinitely far from the particle, we obtain known results on the dynamics of particle sedimentation along and perpendicular to one plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.