We consider equilibrium problems for a cracked composite plate with a thin cylindrical rigid inclusion. Deformation of an elastic matrix is described by the Timoshenko model. The plate is assumed to have a through crack that does not touch the rigid inclusion. In order to describe mutual nonpenetration of the crack faces we impose a boundary condition in the form of inequality on the crack curve. For a family of appropriate variational problems, we analyze the dependence of their solutions on the location of the rigid inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on the solution space, while the location parameter of inclusion is chosen as the control parameter. The existence of a solution to the optimal control problem and a continuous dependence of the solutions in a suitable Sobolev space with respect to the location parameter are proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.