Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2. Here, we demonstrate that B. abortus triggers non-canonical inflammasome activation dependent on caspase-11 and gasdermin-D (GSDMD). Additionally, we identify that Brucella-LPS is the ligand for caspase-11 activation. Interestingly, we determine that B. abortus is able to trigger pyroptosis leading to pore formation and cell death, and this process is dependent on caspase-11 and GSDMD but independently of caspase-1 protease activity and NLRP3. Mice lacking either caspase-11 or GSDMD were significantly more susceptible to infection with B. abortus than caspase-1 knockout or wild-type animals. Additionally, guanylate-binding proteins (GBPs) present in mouse chromosome 3 participate in the recognition of LPS by caspase-11 contributing to non-canonical inflammasome activation as observed by the response of Gbpchr3-/- BMDMs to bacterial stimulation. We further determined by siRNA knockdown that among the GBPs contained in mouse chromosome 3, GBP5 is the most important for Brucella LPS to be recognized by caspase-11 triggering IL-1β secretion and LDH release. Additionally, we observed a reduction in neutrophil, dendritic cell and macrophage influx in spleens of Casp11-/- and Gsdmd-/- compared to wild-type mice, indicating that caspase-11 and GSDMD are implicated in the recruitment and activation of immune cells during Brucella infection. Finally, depletion of neutrophils renders wild-type mice more susceptible to Brucella infection. Taken together, these data suggest that caspase-11/GSDMD-dependent pyroptosis triggered by B. abortus is important to infection restriction in vivo and contributes to immune cell recruitment and activation.
Immunity against microbes depends on recognition of pathogen-associated molecular patterns by innate receptors. Signaling pathways triggered by DNA involves TLR9, AIM2, and stimulator of IFN genes (STING). In this study, we observed by microarray analysis that several type I IFN-associated genes, such as IFN-β and guanylate-binding proteins (GBPs), are downregulated in STING knockout (KO) macrophages infected with or transfected with DNA. Additionally, we determined that STING and cyclic GMP-AMP synthase (cGAS) are important to engage the type I IFN pathway, but only STING is required to induce IL-1β secretion, caspase-1 activation, and and expression. Furthermore, we determined that STING but not cGAS is critical for host protection against infection in macrophages and This study provides evidence of a cGAS-independent mechanism of STING-mediated protection against an intracellular bacterial infection. Additionally, infected IFN regulatory factor-1 and IFNAR KO macrophages had reduced and expression and these cells were more permissive to replication compared with wild-type control macrophages. Because GBPs are critical to target vacuolar bacteria, we determined whether GBP2 and GBP affect control in vivo. GBP but not GBP2 KO mice were more susceptible to bacterial infection, and small interfering RNA treated-macrophages showed reduction in IL-1β secretion and caspase-1 activation. Finally, we also demonstrated that DNA colocalizes with AIM2, and AIM2 KO mice are less resistant to infection. In conclusion, these findings suggest that the STING-dependent type I IFN pathway is critical for the GBP-mediated release of DNA into the cytosol and subsequent activation of AIM2.
Protease inhibitors have important function during homeostasis, inflammation and tissue injury. In this study, we described the role of Schistosoma mansoni SmKI-1 serine protease inhibitor in parasite development and as a molecule capable of regulating different models of inflammatory diseases. First, we determine that recombinant (r) SmKI-1 and its Kunitz domain but not the C-terminal region possess inhibitory activity against trypsin and neutrophil elastase (NE). To better understand the molecular basis of NE inhibition by SmKI-1, molecular docking studies were also conducted. Docking results suggest a complete blockage of NE active site by SmKI-1 Kunitz domain. Additionally, rSmKI-1 markedly inhibited the capacity of NE to kill schistosomes. In order to further investigate the role of SmKI-1 in the parasite, we designed specific siRNA to knockdown SmKI-1 in S. mansoni. SmKI-1 gene suppression in larval stage of S. mansoni robustly impact in parasite development in vitro and in vivo. To determine the ability of SmKI-1 to interfere with neutrophil migration and function, we tested SmKI-1 anti-inflammatory potential in different murine models of inflammatory diseases. Treatment with SmKI-1 rescued acetaminophen (APAP)-mediated liver damage, with a significant reduction in both neutrophil recruitment and elastase activity. In the model of gout arthritis, this protein reduced neutrophil accumulation, IL-1β secretion, hypernociception, and overall pathological score. Finally, we demonstrated the ability of SmKI-1 to inhibit early events that trigger neutrophil recruitment in pleural cavities of mice in response to carrageenan. In conclusion, SmKI-1 is a key protein in S. mansoni survival and it has the ability to inhibit neutrophil function as a promising therapeutic molecule against inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.