<span lang="EN-US">The peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) communication system will be reduced using reconfigurable peak cancellation (RPC). RPC will also aid in improves the error vector magnitude (EVM) and reduces adjacent channel leakage ratio (ACLR) in OFDM communication system. The proposed RPC design methodology and practical implementation using field programmable gate array (FPGA) are discussed. The proposed RPC has been demonstrated using VIRTEX-7 XC7Z100 dual-core FPGA device with less hardware difficulty and minimum utilization of FPGA resources. The proposed RPC improves the efficiency of OFDM communication process by reducing complementary cumulative distribution function (CCDF) with respect to instantaneous power in dB. A comparison analysis was done between the existing selective mapping (SLM) method with proposed RPS method with respect FPGA resource utilization. The proposed RPC is implemented using VIRTEX-7 XC7Z100 dual-core FPGA device. Its effectively utilizing sub-carriers, fast Fourier transform (FFT) filter, bandwidth, and sampling frequency. Due to parallel switching operation, it reduces the PAPR, ACLR and improves EVM in OFDM signal with less hardware complexity.</span>
To analyses the impact of high mobility, dynamic topologies, scalability and routing due to the more dynamic changes in network. To enhance mobile Ad-hoc network (MANET) self-organization capabilities by geographical routing algorithm during mobility. In this paper, a survey has been carried out on geographic routing protocols, such as hybrid routing, Greedy Routing, face-2 Algorithm, Perimeter Routing, quasi random deployment (QRD) techniques and time of arrival (TOA). An optimized multipath routing in wireless sensor network (WSN), energy utilization, detection of anonymous routing, node mobility prediction, data packet distribution strategies in WSN is analyzed. Geographic routing offers previous data packet information such as physical locations, packet elimination dependencies, storage capacity of topology, Associate costs and also identifies the dynamic behavior of nodes with respect to packets frequencies.
The integration of renewable energy resources to utility grid calls for selection of suitable storage system to store generated energy with reliable supply of demand and selection of efficient control system for smooth control of the grid. Battery is the most common energy storage system. Combining a supercapacitor to it makes the system performance better during transients. This paper proposes a hybrid energy storage system with a battery and a supercapacitor to reduce transient power fluctuations and improve the life span of the battery by reducing the charging/discharging cycles with the incorporation of supercapacitor. The battery compensates constant power fluctuations whereas the supercapacitor compensates the transient power fluctuations. This system design offers improved performance, with better regulation of dc link voltage, frequency regulation compared to microgrid with single energy storage. The dynamic performance of the system under varying load conditions has been improved. The work proposes the power management algorithm, which helps in efficient monitoring and smooth control of the entire system. Integration of supercapacitor to the storage system enhances the performance of the microgrid, increases life span of battery and reduces the stress on battery. The DC link bus voltage is efficiently regulated and the demand is supplied reliably.
Nowadays more and more devices and appliances are operated with electricity, thus the electrical crisis is increasing exponentially day by day. In order to avoid the occurrence of electricity crisis, various power generation resources are used at the utility side to enhance the power generation to meet the consumers' demand for electricity. Hence, a suitable control scheme has to be implemented at the microgrid to reduce the electrical fluctuation, power loss and manage the power quality. The Adaptive Proportional Integral Voltage Controller (APIVC) and hysteresis current controller (HCC) are integrated to enhance the quality of power generated. The electrical fluctuation is reduced by the proposed efficient hybrid parallel source controller model for DC Microgrid. The proposed model exerts decentralized control, which is an advanced droop control where communication is not required. The outer voltage control loop and inner current control loop provide faster control to maintain the grid voltage constant. The grid voltage is set as the reference value and the actual value is sensed to generate error value, which sets the reference value of current. The error signal is processed to provide switching signals for the converters. The performance analysis and simulation results show that the proposed mechanism performed better than the conventional methods such as Hysteresis Band Current Controller (HBCC) with Pulse Width Modulation (PWM) and Proportional Integral Voltage Controller (PIVC) with Hysteresis Current Controller (HCC), in terms of the electrical fluctuation, power loss and manage the power quality in the microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.