In this paper we propose a fuzzy neural network prediction approach based on metaheuristics for container flow forecasting. The approach uses fuzzy if-then rules for selection between two different heuristics for developing neural network architecture, simulated annealing and genetic algorithm, respectively. These non-parametric models are compared with traditional parametric ARIMA technique. Time series composed from monthly container traffic observations for Port of Barcelona are used for model developing and testing. Models are compared based on the most important criteria for performance evaluation and for each of the data sets (total container traffic, loaded, unloaded, transit and empty) the appropriate model is selected.
Project planning, defining the limitations and resources by leveling the resources available, have a great importance for the management projects. All these activities directly affect the duration and the cost of the project. To get a competitive value on the market, the project must be completed at the optimum time. In other to be competitive enough the optimum or near optimum solutions of time cost tradeoff and the resource leveling and resource constrained scheduling problems should be obtained in the planning phase of the project. One important aspect of the project management is activity crashing, that is, reducing activity time by adding more resources such as workers and overtime. It is important to decide the optimal crash plan to complete the project within the desired time period. The comparison of fuzzy simulated annealing and the genetic algorithm based on the crashing method is introduced in this paper to evaluate project networks and determine the optimum crashing configuration that minimizes the average project cost, caused by being late and crashing costs in the presence of vagueness and uncertainty. The evaluation results based on a real case study indicate that the method can be reliably applied to engineering projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.