Hydrogel particles are often used as a carrier for immobilization of enzymes, polyphenolic antioxidants, whole microbial, plant or mammalian cells. In many processes, mechanical properties of alginate particles are essential due to their exposure to mechanical forces in production process. Determination and improvement of hydrogels mechanical properties is very important in prevention of the undesirable side effects during the manufacturing process and product application. The aim of this study was to define the mechanical properties of single particles submerged in water and in dry conditions using the compression method between two flat surfaces. The results indicated that the formulation of alginate beads and water loss during compression have significant influence on their mechanical behavior and stiffness. Calcium-alginate particles were produced using an electrostatic droplet extrusion technique, with an initial sodium alginate concentration of 1.5%w/v and calcium chloride (2.0% w/v) as gelling solution. The research findings were used to determine the influence of working conditions, sample deformation (10-50%) and different compression speeds (1-50mm/min) on mechanical strength of alginate beads. The Young?s modules and maximal forces for investigated deformation percentage of the alginate particles were determined from generated force-displacement and stress-strain curves during compression. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.