The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification—the enhanced sensitivity of high-latitude temperature to global warming—in only the last 10–20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming—and resulting weakening of the poleward temperature gradient—is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.
Rapid Arctic warming is hypothesized to favor an increased persistence of regional weather patterns in the Northern Hemisphere (Francis & Vavrus, 2012). Persistent conditions can lead to drought, heat waves, prolonged cold spells, and storminess that can cost millions of dollars in damage and disrupt societal and ecosystem norms. This study defines a new metric called long-duration events (LDEs)-conditions that endure at least four consecutive days-and takes two independent approaches to assessing seasonal changes in weather-pattern persistence over North America. One applies precipitation measurements at weather stations across the United States; the other is based on a cluster analysis of large-scale, upper-level atmospheric patterns. Both methods indicate an overall increase in LDEs. We also find that large-scale patterns consistent with a warm Arctic exhibit an increased frequency of LDEs, suggesting that further Arctic warming may favor persistent weather patterns that can lead to weather extremes.
Meridonal moisture transport into the Arctic derived from one simulation of the National Center for Atmospheric Research Community Climate System Model (CCSM3), spanning the periods of 1960–99, 2010–30, and 2070–89, is analyzed. The twenty-first-century simulation incorporates the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 scenario for CO2 and sulfate emissions. Modeled and observed [from the 40-yr ECMWF Re-Analysis (ERA-40)] sea level pressure (SLP) fields are classified using a neural network technique called self-organizing maps to distill a set of characteristic atmospheric circulation patterns over the region north of 60°N. Model performance is validated for the twentieth century by comparing the frequencies of occurrence of particular circulation regimes in the model to those from the ERA-40. The model successfully captures dominant SLP patterns, but differs from observations in the frequency with which certain patterns occur. The model’s twentieth-century vertical mean moisture transport profile across 70°N compares well in terms of structure but exceeds the observations by about 12% overall. By relating moisture transport to a particular circulation regime, future changes in moisture transport across 70°N are assessed and attributed to changes in frequency with which the atmosphere resides in particular SLP patterns and/or to other factors, such as changes in the meridional moisture gradient. By the late twenty-first century, the transport is projected to increase by about 21% in this model realization, with the largest contribution (32%) to the total change occurring in summer. Only about one-quarter of the annual increase is due to changes in pattern occupancy, suggesting that the majority is related to mainly thermodynamic factors. A larger poleward moisture transport likely constitutes a positive feedback on the system through related increases in latent heat release and the emission of longwave radiation to the surface.
We investigate factors influencing European winter (DJFM) air temperatures for the period 1979-2015 with the focus on changes during the recent period of rapid Arctic warming (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015). We employ meteorological reanalyses analysed with a combination of correlation analysis, two pattern clustering techniques, and backtrajectory airmass identification. In all five selected European regions, severe cold winter events lasting at least 4 days are significantly correlated with warm Arctic episodes. Relationships during opposite conditions of warm Europe/cold Arctic are also significant. Correlations have become consistently stronger since 1998. Large-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.