The molybdenum and tungsten dialkylhydrazido complexes [M(dppe)2 (NNC5H10)]2+ (M = Mo, W; compounds A(Mo) and A(W)) and their two-electron-reduced counterparts [M(dppe)2 (NNC5H10)] (compounds B(Mo) and B(W)) are characterized structurally and spectroscopically. The crystal structure of B(W) indicates a geometry between square pyramidal and trigonal bipyramidal with the NNC5H10 group in the apical position and in the trigonal plane of the complex, respectively. Temperature-dependent 31P NMR spectra of B(Mo) show that this geometry is present in solution as well. At room temperature, rapid Berry pseudorotation between the "axial" and "equatorial" ligand positions gives rise to a singlet in the 31P NMR spectrum. This exchange process is slowed at low temperature, leading to a doublet. The N-N distance of B(W) is 1.388 A, and the W-N distance is 1.781 A. Infrared and Raman spectroscopy applied to A(W), B(W), and their 15N isotopomers reveals extensive mixing between the N-N and W-N vibrations of the metal-N-N core with the modes of the piperidine ring. The N-N force constant of A(W) is determined to be 6.95 mdyn/A, which is close to the values of the Mo and W NNH2 complexes. In B(W), the N-N force constant decreases to 6.4 mdyn/A, which is between the values found for the Mo/W NNH3 and NNH2 complexes. This allows us to attribute N-N double bond character to A(W) and intermediate character between the double and single bonds for the N-N bond of B(W). These findings are supported by DFT calculations. More importantly, the HOMO of B(W) corresponds to a linear combination of the metal d(sigma) orbital with a ligand orbital having N-N sigma* character, inducing a weakening of the N-N bond. This contributes to the cleavage of the N-N bond taking place upon protonation of B(W) at the Nbeta atom of the NNC5H10 group.
N-N cleavage of the dialkylhydrazido complex [W(dppe)2(NNC5H10)] (B(W)) upon treatment with acid, leading to the nitrido/imido complex and piperidine, is investigated experimentally and theoretically. In acetonitrile and at room temperature, B(W) reacts orders of magnitude more rapidly with HNEt3BPh4 than its Mo analogue, [Mo(dppe)2(NNC5H10)] (B(Mo)). A stopped-flow experiment performed for the reaction of B(W) with HNEt3BPh4 in propionitrile at -70 degrees C indicates that protonation of B(W) is completed within the dead time of the stopped-flow apparatus, leading to the primary protonated intermediate B(W)H+. Propionitrile coordination to this species proceeds with a rate constant k(obs(1)) of 1.5 +/- 0.4 s(-1), generating intermediate RCN-B(W)H+ (R = Et) that rapidly adds a further proton at Nbeta and then mediates N-N bond splitting in a slower reaction (k(obs(2)) = 0.35 +/- 0.08 s(-1), 6 equiv of acid). k(obs(1)) and k(obs(2)) are found to be independent of the acid concentration. The experimentally observed reactivities of B(Mo) or B(W) with acids in nitrile solvents are reproduced by DFT calculations. In particular, geometry optimization of models of solvent-coordinated, Nbeta-protonated intermediates is found to lead spontaneously to separation into the nitrido/imido complexes and piperidine/piperidinium, corresponding to activationless heterolytic N-N bond cleavage processes. Moreover, DFT indicates a spontaneous cleavage of nonsolvated B(W) protonated at Nbeta. In the second part of this article, a theoretical analysis of the N-N cleavage reaction in the Mo(III) triamidoamine complex [HIPTN3N]Mo(N2) is presented (HIPTN3N = hexaisopropylterphenyltriamidoamine). To this end, DFT calculations of the Mo(III)N2)triamidoamine complex and its protonated and reduced derivatives are performed. Calculated structural and spectroscopic parameters are compared to available experimental data. N-N cleavage most likely proceeds by one-electron reduction of the Mo(V) hydrazidium intermediate [HIPTN3N]Mo(NNH3)+, which is predicted to have an extremely elongated N-N bond. From an electronic-structure point of view, this reaction is analogous to that of Mo/W hydrazidium complexes with diphos coligands. The general implications of these results with respect to synthetic N2 fixation are discussed.
Reaction of the Mo(0) depe complex [Mo(N 2 H 2 )(depe) 2 (CH 3 CN)](OTf) 2 (3) (depe ) 1,2-bis-(diethylphosphino)ethane) with base gives the ethylimido complex [Mo(depe) 2 (CH 3 CH 2 N)(CH 3 -CN)](OTf) 2 (10), whereas base treatment of the corresponding dppe complex [Mo(N 2 H 2 )-(dppe) 2 (OTf)](OTf) (12; dppe ) 1,2-bis(diphenylphosphino)ethane) leads to formation of [Mo(N 2 )(dppe) 2 (CH 3 CN)] ( 14). Reaction of dinitrogen complex 14 with HBF 4 gives the ethylimido complex [Mo(dppe) 2 (CH 3 CH 2 N)(F)](BF 4 ) ( 17). The protonation of coordinated acetonitrile in complexes 3 and 14 giving the corresponding ethylimido complexes is investigated. Experimental and theoretical evidence is presented for the hypothesis that acetonitrile is only activated toward protonation at the β-carbon if it is bound along with a Lewis base like triflate or fluoride to a Mo(0) center. The activation is further influenced by the phosphine coligands (depe > dppe). DFT geometry optimizations show that the acetonitrile ligand is bent in the activated complexes, exhibiting a lone pair at C β . Protonation at this position first leads to Mo(II) methyl-azavinylidene intermediates (which cannot be isolated) and then to Mo(IV) ethylimido complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.