The Na ϩ -Ca 2ϩ exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PCϩtMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PCϩOGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PCϩtMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Changes in intracellular [Ca 2 þ ] i levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2 0 ,3 0 -cyclic nucleotide-3 0 -phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation. Oligodendrocytes, the myelin-forming cells of the CNS, arise from oligodendrocyte precursor cells (OPCs) that colonize both the gray and the white brain matter during development. 1 Although many OPCs differentiate into mature myelinating oligodendrocytes during the early and much later stages of human brain development, a considerable number of them do persist in the adult brain, and may provide a source of new oligodendrocytes, as well as protoplasmic astrocytes and neurons. 2,3 Because of their apparent stem-like characteristics, adult OPCs have recently gained much attention, for they are regarded as a potential reservoir of cells capable of self-renewal, differentiation, and re-myelination after CNS injury. 4 Thus, understanding how oligodendrocyte development proceeds and what factors govern the differentiation fate of OPCs is crucial to discover new effective therapeutic targets for de-myelinating diseases such as multiple sclerosis (MS).Changes in intracellular calcium levels have a critical role in OPC migration, lineage progression, and differentiation; furthermore, they are required for myelination and remyelination processes. [5][6][7] The Na þ /Ca 2 þ exchanger (NCX), 8 a transmembrane domain protein, which, by operating in a bidirectional way, couples the efflux of Ca 2 þ to the influx of Na þ into the cell or, vice versa, the influx of Ca 2 þ to the efflux of Na þ , is involved in the regulation of diverse neuronal and glial cell functions. 8,9 Furthermore, NCX is involved in regulating int...
It has been recently shown that a short sublethal brain ischemia subsequent to a prolonged harmful ischemic episode may confer ischemic neuroprotection, a phenomenon termed ischemic postconditioning. Na(+)/Ca(2+) exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are plasma membrane ionic transporters widely distributed in the brain and involved in the control of Na(+) and Ca(2+) homeostasis and in the progression of stroke damage. The objective of this study was to evaluate the role of these three proteins in the postconditioning-induced neuroprotection. The NCX protein and mRNA expression was evaluated at different time points in the ischemic temporoparietal cortex of rats subjected to tMCAO alone or to tMCAO plus ischemic postconditioning. The results of this study showed that NCX3 protein and ncx3 mRNA were upregulated in those brain regions protected by postconditioning treatment. These changes in NCX3 expression were mediated by the phosphorylated form of the ubiquitously expressed serine/threonine protein kinase p-AKT, as the p-AKT inhibition prevented NCX3 upregulation. The relevant role of NCX3 during postconditioning was further confirmed by results showing that NCX3 silencing, induced by intracerebroventricular infusion of small interfering RNA (siRNA), partially reverted the postconditioning-induced neuroprotection. The results of this study support the idea that the enhancement of NCX3 expression and activity might represent a reasonable strategy to reduce the infarct extension after stroke.
Na(+)/Ca2+ exchanger (NCX) is a plasma membrane transporter that, by regulating Ca2+ and Na(+) homeostasis, contributes to brain stroke damage. The objectives of this study were to investigate whether there might be miRNAs in the brain able to regulate NCX1 expression and, thereafter, to set up a valid therapeutic strategy able to reduce stroke-induced brain damage by regulating NCX1 expression. Thus, we tested whether miR-103-1, a microRNA belonging to the miR-103/107 family that on the basis of sequence analysis might be a potential NCX1 regulator, could control NCX1 expression. The role of miR-103-1 was assessed in a rat model of transient cerebral ischemia by evaluating the effect of the correspondent antimiRNA on both brain infarct volume and neurological deficits. NCX1 expression was dramatically reduced when cortical neurons were exposed to miR-103-1. This alleged tight regulation of NCX1 by miR-103-1 was further corroborated by luciferase assay. Notably, antimiR-103-1 prevented NCX1 protein downregulation induced by the increase in miR-103-1 after brain ischemia, thereby reducing brain damage and neurological deficits. Overall, the identification of a microRNA able to selectively regulate NCX1 in the brain clarifies a new important molecular mechanism of NCX1 regulation in the brain and offers the opportunity to develop a new therapeutic strategy for stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.