Abstract-The cognitive interference channel is a two-user interference channel in which one transmitter is non-causally provided with the message of the other transmitter. This channel model has been extensively studied in the past years and capacity results have been proved for certain classes of channels. This paper presents new inner and outer bounds for the capacity region of the cognitive interference channel, as well as new capacity results. Previously proposed outer bounds are expressed in terms of auxiliary random variables for which no cardinality constraint of their alphabet is known. Consequently, it is not possible to evaluate such outer bounds explicitly for a given channel. The outer bound derived in this work is based on an idea originally devised by Sato for channels without receiver cooperation and results in an outer bound that does not contain auxiliary random variables, thus allowing it to be more easily evaluated. The inner bound presented in this work-which includes rate splitting, superposition coding, a broadcast channel-like binning scheme and Gel'fand Pinsker coding-is the largest known to date and is explicitly shown to include all previously proposed achievable rate regions. The novel inner and outer bounds are shown to coincide in certain cases. In particular, capacity is proved for a class of channels in the so-called "better cognitive decoding" regime, which includes the regimes in which capacity was known. Finally, the capacity region of the semi-deterministic cognitive interference channel, in which the signal at the cognitive receiver is an arbitrary deterministic function of the channel inputs, is established.Index Terms-Achievable region, better cognitive decoding regime, capacity, cognitive channel, cognitive interference channel, inner bound, interference channel with degraded message sets, outer bound, semi-deterministic channel.
Abstract-In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of a relay. In this paper, we derive achievable rate regions for four new half-duplex protocols and compare these to four existing half-duplex protocols and outer bounds. In time, our protocols consist of either two or three phases. In the two phase protocols, both users simultaneously transmit during the first phase and the relay alone transmits during the second phase, while in the three phase protocol the two users sequentially transmit followed by a transmission from the relay. The relay may forward information in one of four manners; we outline existing amplify and forward (AF), decode and forward (DF), lattice based, and compress and forward (CF) relaying schemes and introduce the novel mixed forward scheme. The latter is a combination of CF in one direction and DF in the other. We derive achievable rate regions for the CF and Mixed relaying schemes for the two and three phase protocols. We provide a comprehensive treatment of eight possible half-duplex bi-directional relaying protocols in Gaussian noise, obtaining their relative performance under different SNR and relay geometries.Index Terms-Achievable rate regions, bi-directional communication, compress and forward, relaying.
The presence of signal outage, due to shadowing and blockage, is expected to be the main bottleneck in millimeter wave (mmWave) networks. Moreover, with the anticipated vision that mmWave networks would have a dense deployment of base stations, interference from strong line-of-sight base stations increases too, thus further increasing the probability of outage. To address the issue of reducing outage, this paper explores the possibility of base station cooperation in the downlink of a mmWave heterogenous network. The main focus of this work is showing that, in a stochastic geometry framework, cooperation from randomly located base stations decreases outage probability. With the presumed vision that less severe fading will be experienced due to highly directional transmissions, one might expect that cooperation would increase the coverage probability; our numerical examples suggest that is in fact the case. Coverage probabilities are derived accounting for: different fading distributions, antenna directionality and blockage. Numerical results suggest that coverage with base station cooperation in dense mmWave systems and with no small scale fading considerably exceeds coverage with no cooperation. In contrast, an insignificant increase is reported when mmWave networks are less dense with a high probability of signal blockage and with Rayleigh fading.
The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Published Version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.