The aim of this study was to determine if any correlation exists between melanocortin-1 receptor (MC1R) polymorphisms and skin and fibre colour in alpacas. Primers capable of amplifying the entire alpaca MC1R gene were designed from a comparative alignment of Bos taurus and Mus musculus MC1R gene sequences. The complete MC1R gene of 41 alpacas exhibiting a range of fibre colours, and which were sourced from farms across Australia, was sequenced from PCR products. Twenty-one single nucleotide polymorphisms were identified within MC1R. Two of these polymorphisms (A82G and C901T) have the potential to reduce eumelanin production by disrupting the activity of MC1R. No agreement was observed between fibre colour alone and MC1R genotype in the 41 animals in this study. However, when the animals were assigned to groups based on the presence or absence of eumelanin in their fibre and skin, only animals that had at least one allele with the A82/C901 combination expressed eumelanin. We propose that A82/C901 is the wild-type dominant ‘E’ MC1R allele, while alpacas with either G82/T901 or G82/Y901 are homozygous for the recessive ‘e’ MC1R allele and are therefore unable to produce eumelanin.
SUM M ARYThe coding region of the alpaca Agouti signalling protein (ASIP) gene was sequenced. It was determined to be 402 nucleotides long and code for a protein that is 133 amino acids long. Eight mutations were identified in a sample of 15 alpaca, five in the coding region and three in the introns flanking the exons. In silico analysis showed that three of the five mutations in the coding sequence, c.325_381del57, c.292C>T and c.353G>A are probable loss-of-function mutations. The three mutations were strongly associated with black fibre colour, with 0·90 of black alpacas in the current study having two copies of one or another of the mutations. However, not all black animals displayed the putative 'aa' genotype, and almost half of the non-black animals did display that genotype. Contributing factors such as regulatory region mutations, interactions of ASIP with melanocortin-1 receptor (MC1R) and α-melanocyte stimulating hormone (α-MSH), the effect of dilution genes and subjective phenotype assignment are discussed. These mutations will allow alpaca breeders to select for or against black, but they do not explain all black phenotypes in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.