Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.
DNA methylation is essential for the control of a number of biological mechanisms in mammals [1]. Mammalian development is accompanied by two major waves of genome-wide demethylation and remethylation: one during germ-cell development and the other after fertilisation [2] [3] [4] [5] [6] [7]. Most previous studies have suggested that the genome-wide demethylation observed after fertilisation occurs passively, that is, by the lack of maintenance methylation following DNA replication and cell division [6] [7], although one other study has reported that replication-independent demethylation may also occur during early embryogenesis [8]. Here, we report that genes that are highly methylated in sperm are rapidly demethylated in the zygote only hours after fertilisation, before the first round of DNA replication commences. By contrast, the oocyte-derived maternal alleles are unaffected by this reprogramming. They either remain methylated after fertilisation or become further methylated de novo. These results provide the first direct evidence for active demethylation of single-copy genes in the mammalian zygote and, moreover, reveal a striking asymmetry in epigenetic methylation reprogramming. Whereas paternally (sperm)-derived sequences are exposed to putative active demethylases in the oocyte cytoplasm, maternally (oocyte)-derived sequences are protected from this reaction. These results, whose generality is supported by findings of Mayer et al. [9], have important implications for the establishment of biparental genetic totipotency after fertilisation, the establishment and maintenance of genomic imprinting, and the reprogramming of somatic cells during cloning.
Genome-wide epigenetic reprogramming by demethylation occurs in early mouse embryos and primordial germ cells. In early embryos many single-copy sequences become demethylated both by active and passive demethylation, whereas imprinted gene methylation remains unaffected. In primordial germ cells single-copy and imprinted sequences are demethylated, presumably by active demethylation. Here we investigated systematically by bisulphite sequencing the methylation profiles of IAP and Line1 repeated sequence families during preimplantation and primordial germ cell development. Whereas Line1 elements were substantially demethylated during both developmental periods, IAP elements were largely resistant to demethylation, particularly during preimplantation development. This may be desirable in order to prevent IAP retrotransposition, which could cause mutations. In turn, this can result in the transgenerational inheritance of epigenetic states of IAPs, which could lead to heritable epimutations of neighbouring genes through influencing their transcriptional states.
The clustered organization of most imprinted genes in mammals suggests coordinated genetic and epigenetic control mechanisms. Comparisons between human and mouse will help in elucidating these mechanisms by identifying structural and functional similarities. Previously we reported on such a comparison in the central part of the mouse imprinting cluster on distal chromosome 7 with the homologous Beckwith-Wiedemann syndrome (BWS) gene cluster on human chromosome 11p15.5. Here we focus on the adjacent sequences of 0.5 Mb including the KCNQ1/Kcnq1 and CDKN1C/Cdkn1c genes, which are implicated in BWS, and on one of the proposed boundary regions of the imprinting cluster. As in the previously analysed central region, this part of the cluster exhibits a highly conserved arrangement and structure of genes. The most striking similarity is found in the 3' part of the KCNQ1/Kcnq1 genes in large stretches of mostly non-coding sequences. The conserved region includes the recently identified KCNQ1OT1/Kcnq1ot1 antisense transcripts, flanked by a strikingly conserved cluster of LINE/Line elements and a CpG island which we show to carry a maternal germline methylation imprint. This region is likely to be the proposed second imprinting centre (IC2) in the BWS cluster. We also identified several novel genes inside and outside the previously proposed boundaries of the imprinting cluster. One of the genes outside the cluster, Obph1, is imprinted in mouse placenta indicating that at least in extra-embryonic tissues the imprinting cluster extends into a larger domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.