Major depressive disorder (MDD) is the leading cause of disability worldwide. However, 30-50% of patients are unresponsive to commonly prescribed antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis, the bidirectional communications between the central nervous system and gastrointestinal tract that are modulated by gut microorganisms, has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity, still, little is known about intestinal barrier function in these conditions particularly for the small intestine where most food and drug absorption takes place. Thus, here we investigate how chronic social or variable stress, two mouse models of depression, impact the jejunum (JEJ) intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Altered microbial populations as well as changes in gene expression of JEJ tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We took advantage of machine learning to characterize in detail morphological tight junction properties identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated if LPS injection recapitulates stress-induced changes in the JEJ and observed profound sex differences. Finally, LPS-binding protein (LBP), a marker of gut barrier leakiness, was associated with stress vulnerability in mice and translational value was confirmed on blood samples from women with MDD. Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and possibly, human depression.
Physical exercise has been positioned as a promising strategy to prevent and/or alleviate anxiety and depression, but the mechanisms underlying its effects on mental health have yet to be entirely determined. Although the prevalence of depression and anxiety in women is about twice that of men, very few studies have examined whether physical exercise could affect mental health differently according to sex. This study examined, in mice, the sex-specific effects of voluntary exercise on body weight, depressive- and anxiety-like behaviors, as well as different markers along the gut microbiota-immune-brain axis. Male and female C57BL/6N mice had voluntary access to running wheels in their home-cages for 24 days or were left undisturbed in identical home-cages without running wheels. Behaviors were then examined in the open field, Splash, elevated plus maze, and tail suspension tests. Gene expression of pro-inflammatory cytokines, microglia activation-related genes, and tight junction proteins was determined in the jejunum and the hippocampus, while microbiota composition and predicted function were verified in cecum contents. Voluntary exercise limited weight gains, reduced anxiety-like behaviors, and altered grooming patterns in males exclusively. Although the exercise intervention resulted in changes to brain inflammatory activity and to cecal microbiota composition and inferred function in both sexes, reductions in the jejunal expression of pro-inflammatory markers were observed in females only. These findings support the view that voluntary exercise, even when performed during a short period, is beneficial for mental and intestinal health and that its sex-specific effects on behavior could be, at least in part, mediated by the gut microbiota-immune-brain axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.