ObjectivesThis work aimed to design, synthesize and characterize replacement natural moisturizing factor (NMF) composed of modified hygroscopic linear amino acids to pre‐empt or repair skin barrier dysfunction.MethodsFollowing synthesis and characterization, thermo‐gravimetric analysis and quantum mechanics molecular modelling quantified and depicted water binding to the new compounds. Deliquescence relative humidity demonstrated the water‐scavenging ability of the compounds, whereas snake skin moisturizing studies showed they increased water uptake into snake skin.ResultsFrom thermal analysis, N‐hydroxyglycine showed greatest water‐holding capacity followed by N‐hydroxyserine, l‐homoserine and α‐hydroxyglycine; coupled with quantum mechanics molecular modelling, between 8 and 12 molecules of water could associate with each molecule of either N‐hydroxyglycine, N‐hydroxyserine or l‐homoserine. All of our modified amino acids were efficacious and induced similar or greater water uptake compared with the established moisturizing compounds hyaluronic acid, glycerine and urea in snake skin. Incorporated at 10% in Oilatum, N‐hydroxyserine induced >200% greater moisture uptake into dry snake skin compared to treatment with water alone, with efficacy related to the molecule structure and ability to bind to 12 water molecules. Oilatum cream spiked with all our unnatural amino acid hydrotropes increased water uptake into snake skin compared with Oilatum alone.The compound series was designed to elucidate some structure – efficacy relationships. Amino acid chirality did not affect the water‐holding capacity but did affect uptake into skin. Compounds with high melting points and bond energies tended to decrease water‐holding capacity. With isosteric replacement, the more electronegative atoms gave greater water‐holding capacities.ConclusionsThis work demonstrates the potential of unnatural amino acid hydrotropes as skin moisturizers and has developed some predictive ‘rules’ for further design and refinement of chemical structures.
The nitro group is an exceptionally versatile functional group, not only because it is essentially a masked amine, but also because its chemistry can be exploited in a number of useful ways. Asymmetric organocatalysis in particular has capitalized on the use of the nitro group towards the synthesis of a variety of nitrogencontaining targets. Perhaps of greatest interest is that this functional group has been shown to be invaluable within the rapidly expanding field of organocatalytic domino reactions. This review features selected examples of nitro group reactivity in organocatalysis to demonstrate its dynamism and utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.